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ABSTRACT
Malicious users are a threat to many sites and defending
against them demands innovative countermeasures. When
malicious users join sites, they provide limited information
about themselves. With this limited information, sites can
find it difficult to distinguish between a malicious user and a
normal user. In this study, we develop a methodology that
identifies malicious users with limited information. As infor-
mation provided by malicious users can vary, the proposed
methodology utilizes minimum information to identify
malicious users. It is shown that as little as 10 bits of
information can help greatly in this challenging task. The
experiments results verify that this methodology is effective
in identifying malicious users in the realistic scenario of lim-
ited information availability.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining
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1. INTRODUCTION
Social media sites are inundated with malicious users. In

June 2012, Facebook reported that 8.7% – or 83 million –
of its user accounts are fake [35]; that is roughly the size of
Egypt’s population and larger than the population of 230
countries in the world [37]. Facebook also reported that of
that 8.7%, 1.5% are “undesirable” accounts that are created
for malicious purposes [35]. Twitter faces similar challenges.
In its security filings, Twitter claims that 5% of its users are
fake [10]; however, researchers estimate the percentage of its
fake accounts to be as high as 10% [10]. These fake accounts
are mostly sold on black market for as low as $0.05 and are
used for malicious activities [10].
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Malicious accounts may be created for different purposes.
According to Cao et al. [4], some malicious accounts are
created for profitable activities, such as click fraud, iden-
tity fraud, and malware distribution. Others are created for
social purposes such as pranks, stalking, cyberbullying, or
identity concealing. Online service providers find detecting
and subsequently, suspending malicious accounts vital in or-
der to protect their normal users against external threats.

Detecting malicious accounts dates back to the onset of so-
cial media. Comprehensive feature-based techniques, human-
in-the-loop approaches, or techniques that use social-graphs
are devised (see a review in Section 2). These techniques
assume that a good amount of information about malicious
users has been gathered. This information includes (1) the
content that malicious users generate, (2) the users they be-
friend, or (3) the malicious activities they have exhibited. In
short, their content, links, or activities. However, malicious
users often do not have an incentive to generate content
or befriend others and detecting them after they have ex-
hibited malicious activities is not useful. Hence, malicious
users need to be detected using their often limited content
or link (i.e., friends) information. Even the limited infor-
mation that malicious users provide can vary. Therefore, to
detect malicious users with different levels of information,
one needs to be able to detect malicious users even when
there is minimum information available.

In this paper, we aim to detect malicious users with min-
imum information. We make the following contributions:

1. We introduce the first methodology to detect malicious
users with minimum information. This methodology
can be used as the first line of combat against malicious
users on the Web.

2. We identify five general characteristics of malicious
users and demonstrate how one can identify these char-
acteristics in user-generated content online.

3. We demonstrate that with as little as 10 bits of infor-
mation, one can distinguish between normal and ma-
licious users.

4. We show via experiments that the methodology is ro-
bust and at least as effective as techniques that have
access to more information.

In Section 2, we review the malicious user detection lit-
erature. We formally define the malicious user detection
problem with minimum information in Section 3. We detail
characteristics of malicious users and how one can identify
such characteristics in user content in Section 4. We de-
tail our experiments in Section 5. Finally, we conclude in
Section 6 with directions for future work.



2. LITERATURE ON
MALICIOUS USER DETECTION

While detecting malicious users with minimum informa-
tion is unexplored, identifying malicious users in general is
not a new topic. Often, to identify malicious users, (1)
feature-based techniques, (2) human-in-the-loop techniques,
or (3) techniques that use social graphs are used. We review
representative techniques for each category and discuss how
the current work relates to these techniques.

I. Feature-based Techniques. In feature-based methods,
different features are constructed to capture the behavior of
the malicious user. These features are then used to construct
a dataset that is trained by a supervised learning framework.
For instance, Xie et al. [39], develop the AutoRe framework
that identifies botnet campaigns. Their framework identifies
traffic that is (1) bursty and (2) distributed. These features
of traffic help identify botnets. The bursty and distributed
nature of unwanted content is also used in detecting mali-
cious posts on Facebook [12]. Wang [34] introduces a method
that detects spam on Twitter using network features such as
the number of followers or friends and content features such
as duplicated tweets. Feature-based techniques have been
discussed extensively for detecting unwanted content in so-
cial tagging systems [20,24], social networks [29], email [21],
online videos [3], and microblogging sites [2, 43]. Our work
differs from the existing work in two aspects. First, current
techniques for identifying malicious users often employ con-
tent or link information. Thus, one often needs a large col-
lection of data instances to obtain guaranteed performances.
Our approach employs minimum information across sites.
Second, current literature is often context-dependent (e.g.,
site specific). Our method employs the minimum informa-
tion that is universally available across sites and is robust
even when information is collected from multiple sites.

II. Human-in-the-loop Methods. One approach of iden-
tifying malicious users is to employ human experts. Humans
can naturally identify malicious users by their activities. Al-
ternatively, one can combat malicious activities by technolo-
gies such as CAPTCHAs [33] or photo-based authentica-
tions [4] that are only solvable by humans. Although specific
attacks are proposed for human-in-the-loop methods [26,41],
they are in general considered effective. Unfortunately, ver-
ifying accounts by humans is time consuming. For exam-
ple, Tuenti, a Spain-based social networking service, hires
humans to investigate reported users and block malicious
ones [4]. An employee can only process 250 to 300 reports
an hour from the daily 12,000 reports received. This issue
makes human-in-the-loop processes infeasible for large-scale
networks. Our approach in this paper is automatic and can
easily scale to billions of users.

III. Social Graph-based Techniques. In social graph-
based methods, the information about the links (i.e., friend-
ships) that the malicious individual has created helps detect
the malicious user. For instance, Yang and colleagues [42]
detect more than 100,000 fake accounts using social network
features on RenRen social network. In particular, they find
that invitation frequency, outgoing requests accepted, in-
coming requests accepted, and network clustering coefficient
can help identify fake accounts. In other works, probabilis-
tic, combinatorial, or random walk models have been applied

to network information to identify malicious users. Exam-
ples include, Sybilguard [45], Gatekeeper [31], SybilInfer [7],
SumUp [30], and Sybillimit [44]. These methods or variants
can be applied on sites such as Twitter to identify malicious
users [13]. Mislove et al. [32] show that most techniques
in this area function by finding local communities around
trusted nodes. Assuming the existence of a social graph is
a strong assumption. One often requires specific privacy
permission to obtain such graphs and in specific cases, this
graph is not available. In cases where there is no social
graph, our methodology is still easily applicable.

3. MALICIOUS USER DETECTION
WITH MINIMUM INFORMATION

Who is a malicious user? The definition varies in the
literature from users that harass other users to users that
jeopardize the privacy of others [4]. We consider malicious
users on a site, those whom normal users consider malicious.
Clearly, the opinion of normal users can be subjective and
has to be verified by experts. In section 5.1, we demonstrate
how such human-verified data can be collected. Humans are
known to be accurate in detecting malicious users on social
media [15, 16, 27]. However, as discussed in our literature
review, human-in-the-loop approaches are time consuming
and expensive for large-scale networks. Hence, by inves-
tigating how humans detect malicious users, one can not
only scale detection of malicious users, but can also protect
against a wide spectrum of malicious activities that humans
are able to detect on social media [4, 5].

Our goal in this paper is to identify such malicious users.
Malicious users often provide little or no information. Hence,
a method that can be universally employed on different sites
is constrained to use the minimum information available on
all sites. Usernames are the minimum information available
on all social media sites [46]. Often, usernames are alphanu-
meric strings or email addresses, without which users cannot
join sites. Because of their unique characteristics, usernames
are shown to be surprisingly effective for identifying individ-
uals [46]. We formalize our problem using usernames as the
minimum information available on all sites. Other content or
link information such as user profile information or friends,
when added to usernames, should help better identify ma-
licious individuals. However, the lack of consistency in the
availability of such information on all social media sites, di-
rects us toward formulating our problem with usernames.

When using usernames, the goal is to detect malicious
users from their usernames. Hence, one can learn a function
M(.) that given a username u, predicts whether the user-
name belongs to a malicious user or not. We denote the M
function as the malicious user detection function. Formally,

Definition. Malicious User Detection. Given a user-
name u, a malicious user detection method attempts to learn
a malicious user detection function M(.) such that

M(u) =

{
1 If u belongs to a malicious user;
0 Otherwise.

Malicious users have distinctive characteristics. These
characteristics leave traces in the usernames of malicious
users. These traces can be captured using data features. Fol-
lowing the common machine learning and data mining prac-
tice, the malicious user detection function can be learned



using a supervised learning algorithm that utilizes these fea-
tures and labeled data. In our problem, labeled data includes
usernames that are known to be malicious or normal.

Supervised learning can be performed using classification
or regression. Depending on the malicious user detection
task at hand, one can even learn the probability that a user-
name is malicious, generalizing our binary M function to
a probabilistic one (M(u) = p). This probability can help
select the most likely malicious username. The learning of
the malicious user detection function is the most straightfor-
ward. Therefore, we next elaborate on different characteris-
tics of malicious users and how features can be constructed
to capture traces introduced in usernames due to these char-
acteristics. Note that the designed features may or may not
help in the learning framework and are included as as long
as they could be computed from usernames. Later on in
Section 5, we will analyze the effectiveness of all features,
and if it is necessary to find as many features as possible.

In summary, to detect malicious users, we (1) identify
characteristics of malicious users, (2) construct features to
identify traces of these characteristics in usernames, and (3)
train a learning model to detect malicious users. Due to
the interdependent nature of these user characteristics and
feature construction, we discuss them together next.

4. CHARACTERISTICS OF
MALICIOUS USERS

Humans detect malicious users on social media by their
characteristics. By reviewing related literature from com-
puter science, security, criminology, among other fields [4,
11,29,32,39,42], we identified five general characteristics of
malicious users. Malicious users can have one (or a combina-
tion) of these characteristics. As researchers identify more
characteristics of malicious users, our methodology can be
extended with these characteristics and the corresponding
features that can capture traces left by them in usernames.

4.1 Malicious Users are Complex and Diverse
Malicious users often generate (1) complex and (2) diverse

information to ensure their anonymity.

I. Complexity. To measure complexity of usernames, it is
natural to borrow techniques from complexity theory. We
employ Kolmogorov complexity [22] to determine the com-
plexity of a username. Kolmogorov complexity of a user-
name is defined as the length of the shortest program ca-
pable of reproducing the username on a universal computer
such as a Turing Machine. Hence, Kolmogorov complexity is
the minimum quantity of information required to reproduce
the username and measures its complexity.

For username u, let K(u) denote its Kolmogorov com-
plexity. While K(u) defines the complexity of username
u, it is well-known that its exact value cannot be com-
puted [19]. Nonetheless, the following theorem helps com-
pute the expected Kolmogorov complexity. Assume that
usernames such as u are distributed as a random variable
U , called username space, with probability distribution P .

Theorem 1. (from Li and Vitányi [22]) For random vari-
able U , expected Kolmogorov complexity E(K(U)) equals its
entropy H(U), plus a constant term that depends only on P .

Hence, by computing the entropy of the username space,
one can approximate the expected Kolmogorov complexity

in usernames. However, the theorem discusses the entropy of
the username space and it is not clear how one can connect
this theorem to a specific username. For connecting prop-
erties of specific usernames to the entropy of the username
space, we can use the concept of information surprise [6].

For username u, let p(u) denote the probability of observ-
ing u. Information surprise for u is defined as

I(u) = − log2(p(u)). (1)

Hence, for a rare username u with a small observation
probability p(u), information surprise I(u) is much higher
than that of a common username with a higher observation
probability. It is well-known that information surprise is
deeply connected to entropy:

Theorem 2. (from Cover and Thomas [6]) The expected
information surprise E(I(U)) for username space U (i.e.,
random variable U) is equivalent to its entropy H(U).

So, by combining Theorems 1 and 2, one can approxi-
mate the expected Kolmogorov complexity of usernames by
computing the expected information surprise in them. The
information surprise for a username u is computed by mea-
suring I(u) = − log2(p(u)), which requires the probability
of observing username u. The probability of observing user-
name u, denoted in characters as u = c1c2 . . . cn, is

p(u) = Πn
i=1p(ci|c1c2 . . . ci−1). (2)

We approximate this probability using an n-gram model,

p(u) ≈ Πn
i=1p(ci|ci−(n−1) . . . ci−1). (3)

Often, to denote the beginning and the end of a word
special symbols are added such as ? and •. So, for username
sara, the probability approximated using a 2-gram model is

p(sara) ≈ p(s|?)p(a|s)p(r|a)p(a|r)p(•|a). (4)

To estimate the probability of a username using an n-
gram model, one needs to compute the probability of its
comprising n-grams. The probability of these n-grams can
be computed using a large set of usernames. For that, we use
a dataset of 158 million Facebook usernames (later discussed
in Section 5.1) to train a 6-gram model. This n-gram model
was employed to compute the probability of a username and
in turn, its information surprise.

Being able to compute information surprise, we obtain its
values for a set of 33 million usernames. The set contains
both normal and malicious users. The process followed to
collect these usernames is later discussed in Section 5.1. For
both normal and malicious users, we estimate the empirical
probability density function using Kaplan-Meier estimate.
Figure 1 plots the empirical probability density function of
information surprise values for normal and malicious users.

The thick solid line in Figure 1 demonstrates the distri-
bution of surprise values for normal usernames and the thin
solid line depicts the distribution for malicious usernames.
As shown in the figure, malicious usernames are more com-
plex with the expected information surprise (i.e., expected
Kolmogorov complexity) value of 23.11 bits and more di-
verse, ranging from 4.14 bits to 232.64 bits.

Unlike malicious usernames, normal usernames are less
surprising and more concentrated around a mean value, with
a mean of 12.49 bits and the information surprise value rang-
ing from 3.90 to 31.93 bits. The figure shows that these



Figure 1: Probability Density Function for Informa-
tion Surprise Values of Malicious and Normal Users.

distributions are well separated indicating that by using the
information surprise of a username, one might be able to
accurately classify usernames into malicious or normal.

In Figure 1, the dashed line depicts the curve for the mali-
cious usernames subtracted by the curve for the the normal
usernames. Hence, when this gray line is above zero, it shows
that for a specific information surprise value, the username
is more likely to be malicious and whenever the gray line
is below zero, we observe the opposite. We notice that for
values between 3.91 and 17.96 the curve is below the zero
line, showing usernames are more likely to be normal. In
this range, the mean value is 10.9 bits. Thus, when the in-
formation surprise for a username is approximately 10 bits,
the username is more likely to be normal. The title of this
paper is inspired by this observation.

Hence, we include the information surprise of the user-
name (i.e., its complexity) as another feature in our dataset.

II. Diversity. To create diverse information, malicious
users often generate usernames that include digits. There-
fore, we include the number of digits in the username as
a feature. We also include the proportion of digits in the
username as another feature in our feature set.

4.2 Malicious Users are
Demographically Biased

In the criminology literature [11], it is well-known that
crime correlates with demographic information. Thus, one
expects to better detect malicious users by determining their
demographics. Following the diffusion of innovations termi-
nology [23], a malicious user has internal demographic at-
tributes, external demographic attributes, or a combination
of internal and external (i.e., mixed) attributes.

Internal attributes are endogenous attributes that the user
has no control over such as his or her age. External at-
tributes are attributes due to the environment that the ma-
licious user lives in such as the language that the malicious
user speaks. The level of knowledge that the malicious user
has is an example of a user attribute that is mixed (inter-
nal+external). This is because it depends on both the envi-
ronment that the malicious user lives in and on the internal
attributes of a user such as his interests. To concretely pro-
file a malicious user, one has to consider all these attributes.
We select gender from internal attributes, language from ex-
ternal attributes, and knowledge (i.e., vocabulary size) from
mixed demographic attributes to be predicted from user-
names. Clearly, with more internal/external/mixed demo-
graphic attributes, one should better profile malicious users.

Figure 2: Popularity of names: Jennifer and Jacob
over time. Higher values shows more popularity.

We leave that as a future direction for this work. But, how
can we detect gender, language, or other attributes of indi-
viduals from their usernames?

Psychological studies [14] show that users leave traces of
their personal information and attributes in the information
they generate such as their usernames. For example, our
analysis of popular names by birth year of US social security
records1 since 1879 shows us that the frequency of different
names change over time. For instance, in Figure 2, we de-
pict the popularity of first names: Jennifer and Jacob over
time. For each year, the popularity of each name is shown
on a scale of [0,1], 1 being the most popular name and 0 be-
ing the least popular. Jennifer was the most popular female
name between [1970-1984] whereas Jacob has been the most
popular male name for [1991-2012]. Similar patterns can be
observed for different English and non-English names given
the diversity of the US population. Hence, given a name, one
can estimate the most likely age. Names, interests, as well
as other personal attributes are often abbreviated or used
in usernames [46]. We use these information traces in user-
names to predict gender, language, among other attributes.

I. Malicious User Gender. To predict gender from user-
names, we train a classifier. The classifier decomposes a
username into character n-grams and estimates the gender
likelihood based on these n-grams. This classifier is trained
on the n-grams of a labeled dataset of usernames, in which
the gender for each username is known. We collect our la-
beled dataset from Facebook. Our labeled dataset contains
a set of 4 millions usernames with their corresponding gen-
der. The classifier predicts the gender of a username with
up to 80% accuracy. Notice that because malicious users
tend to hide their identity and gender; instead of the ac-
tual prediction, we include the classifier’s confidence in the
predicted gender as the feature.

II. Malicious User Language. To detect the language of
the username, we train an n-gram statistical language detec-
tor [9] over the European Parliament Proceedings Parallel
Corpus2, which consists of text in 21 European languages
(Bulgarian, Czech, Danish, German, Greek, English, Span-
ish, Estonian, Finnish, French, Hungarian, Italian, Lithua-
nian, Latvian, Dutch, Polish, Portuguese, Romanian, Slo-
vak, Slovene, and Swedish) from 1996-2006 with more than
40 million words per language. The trained model detects
the username’s language, which is a feature in our feature

1http://www.ssa.gov/oact/babynames/
2http://www.statmt.org/europarl/



set. The detected language feature is limited to European
languages. Our language detector will not detect other lan-
guages. The language detector is also challenged when deal-
ing with words that may not follow the statistical patterns
of a language, such as location names, etc. This issue can
be tackled by including the distribution of alphabet letters
in usernames as features [46]. Thus, in addition to predicted
language, we include the alphabet distribution of the user-
name as a feature.

III. Malicious User Knowledge. To approximate the
level of knowledge of a malicious user, we can compute his
or her vocabulary size. The vocabulary size can be computed
by counting the number of words in a large dictionary that
are substrings of the username [46]. This approach captures
different possible interpretations of the username and ap-
proximates the level of knowledge of the malicious user. We
include the vocabulary size as a feature. As this is a rough
approximation, we will determine the efficiency of this fea-
ture in our feature importance analysis in Section 5.5.

4.3 Malicious Users are Anonymous
Malicious activity often requires a level of anonymity [1].

Theoretically, the maximum level of anonymity is achieved
when a username has the maximum entropy [40]. We com-
pute the entropy of the alphabet distribution of the user-
name as well as the normalized entropy of the username to
measure its level of anonymity. To normalize entropy, we
divide it by logn, where n is the number of unique alphabet
letters used in the username. In addition, we also measure
the uniqueness of letters in the username – that is, the num-
ber of unique letters used in the username divided by the
username length. We include entropy, normalized entropy,
and uniqueness as features.

4.4 Malicious Users are Similar
Malicious users tend to be similar. For instance, individ-

uals marketing an illegal product Dangerous-Pill all share
the name of the product Dangerous-Pill in their marketing
content. This malicious content similarity can be captured
in usernames by identifying specific (1) language patterns
and (2) words in the usernames.

4.4.1 Language Patterns
To find finer grain language patterns of users, we em-

ploy character-level n-grams. Character-level n-grams have
shown to be effective in detecting unwanted content [17,18]
and connecting users across social media sites [28]. We com-
pute the normalized character-level bigrams of usernames
and include them as features. Bigram features are normal-
ized using TF-IDF. Bigrams allow for a language-agnostic
solution [46] that can detect common patterns of malicious
users conveniently.

For coarser grain language patterns, we investigate com-
mon habits of malicious users. For instance, it is known that
the use of digits is an indication of unwanted content [20].
In particular, we notice that malicious users tend to start
their usernames with digits; therefore, we include the num-
ber of digits at the beginning of the username as a feature.
We also notice that malicious users repeat character letters
more often that normal users. This strategy allows them
to circumvent widely used statistical malware blockers [38].
Hence, we include the maximum number of times a letter
has been repeated in the username as another feature.

4.4.2 Word Patterns
A well-known approach to identify malicious users or con-

tent is by finding specific keywords in the content generated
by these users. Hence, we denote the existence of these spe-
cific keywords in usernames as an indication of malicious ac-
tivity. We utilize two dictionaries, one containing keywords
related to malicious activities and the other for offensive key-
words3 For each dictionary, we count the number of words
in the dictionary that appear as the substring of the user-
name. We include these two counts for the aforementioned
two dictionaries as features.

4.5 Malicious Users are Efficient
In contrast with complex malicious users (Section 4.1),

some malicious users demand efficiency. This is because the
malicious user is interested in performing the malicious ac-
tivity frequently, quickly, and at large-scale. For instance,
when performing click-fraud, the malicious user is interested
in creating many accounts, each clicking on specific ads.
This efficiency can be observed in usernames in terms of
(1) the username length; and (2) the number of unique al-
phabet letters in usernames. We include both as features.
In addition, we can observe efficiency by determining the
typing patterns of the malicious user.

Most people use one of the two well-known DVORAK and
QWERTY keyboards, or slight variants such as QWERTZ
or AZERTY [36]. It has been shown that the keyboard
layout significantly impacts how random usernames are se-
lected [8]. For example, qwer1234 and aoeusnth are two
well-known passwords commonly selected by QWERTY and
DVORAK users, respectively. To model typing patterns of
malicious users, for each username we construct the follow-
ing 15 features for each keyboard layout (a total of 30 for
both keyboard layouts),

1. (1 feature) The percentage of keys typed using the
same hand that was used for the previous key. The
higher this percentage the less users had to change
hands for typing.

2. (1 feature) The percentage of keys typed using the
same finger that was used for the previous key.

3. (8 features) The percentage of keys typed using each
finger. Thumbs are not included.

4. (4 features) The percentage of keys pressed on rows:
Top Row, Home Row, Bottom Row, and Number Row.
Space bar is not included.

5. (1 feature) The approximate distance (in meters) trav-
eled for typing a username. Normal typing keys are
assumed to be (1.8cm)2 (including gap between keys).

We construct 15×2 = 30 features that capture the typing
patterns of usernames for both keyboards and include them
in our feature set.

We have detailed how characteristics of malicious users
can be captured by meaningful features. These features help
identify traces of malicious activities in usernames. Overall,
for each username, we construct 1,413 features.

Clearly, not all characteristics of malicious users are cov-
ered by our features, and with more theories on character-
istics of malicious users, more features can be constructed.
We will empirically study if it is necessary to use all fea-
tures and the effect of using different features on learning
performance of detecting malicious users.

3All data available at: http://reza.zafarani.net/data/10bits



Following our approach, we compute the feature values
over labeled data, and verify the effectiveness of our method-
ology by learning the malicious user detection function. Next,
experiments for evaluating our methodology are detailed.

5. EXPERIMENTS
We evaluate our methodology to detect malicious users

in this section. First, we verify if our proposed approach
can identify malicious users well. Next, we verify if different
learning algorithms can influence the prediction task. Then,
we determine the sensitivity of our approach to different
conditions. Finally, we perform feature importance analysis
and determine how features designed for each characteristic
of malicious users influence the detection outcome. Before
we present the experiment details, we detail how experimen-
tal data was collected for this research.

5.1 Data Preparation
Our approach to detect malicious users employs a super-

vised learning framework. Hence, labeled data is required.
This labeled data consists of usernames and their corre-
sponding label: malicious or normal. To construct this la-
beled data and for our experiments, we collect four datasets.

I. Malicious Users (negative examples). We collect
malicious usernames from sites such as dronebl.org, ahbl.org,
among others (for a complete list see [25]). These sites
gather lists of usernames that have been reported by other
normal users for malicious purposes. Once reported, these
accounts are manually verified by domain owners to be ma-
licious. These lists are published to help sites promote their
security. We collect a set of 32 million usernames that are
manually reported as malicious by users on different sites.
This set forms our negative examples.

II. Normal Users (positive examples). For collecting
normal users, we require users that are manually labeled as
normal. For that, we refer to Twitter verified accounts, all
manually verified by Twitter employees. These accounts are
all followed by the Twitter handle verified4. By crawling
all the users this account follows, we collect a set of 45,953
usernames guaranteed to be normal. These usernames form
our positive examples.

III. Facebook Users (positive+negative examples).
To diversify the types of usernames we have collected, we
also collect a set of 158 million usernames from Facebook,
that is, 1 in 9 Facebook users in the world are included in our
dataset. Note that the Facebook dataset is not completely
normal as Facebook expects around 1.5% to be malicious.
We employ this dataset for analyzing the sensitivity of our
approach to different conditions (Section 5.4.2).

IV. Gender Dataset. We collect a different set of 4 million
Facebook usernames for which we have the gender informa-
tion. This dataset was used to train our gender prediction
classifier in Section 4.2 to predict gender from usernames.

After collecting these four datasets of usernames5, we com-
pute the corresponding 1,413 features for all datasets and
employ them in our experiments.

4http://twitter.com/verified
5We ensure that the alphabet used in both sets of usernames
match. To avoid site-enforced specific patterns on how user-
names should be created, we filter out usernames that are
not in ASCII or alphanumeric. Our experiments show that
this procedure does not influence our results.

Table 1: Malicious User Detection Performance.
Technique AUC F1

Our Approach 0.9932 0.9644

Baseline b1: Keyword Detection 0.51 0.66

Baseline b2: Username Randomness 0.70 ≈ 0

Baseline b3: Letter Repetition 0.61 ≈ 0

Reference Point r1: Markines et al. [24] 0.984 0.983

Reference Point r2: Gao et al. [12] 0.945 –

Reference Point r3: Wang [34] 0.917 0.917

5.2 Learning
the Malicious User Detection Function

Once the negative and positive examples are prepared,
learning the malicious user detection function can be achieved
by training a classifier. Because our collected negative ex-
amples are more, we subsample the negative examples to
have the same size as the positive examples. This way we
create a dataset that has 50% positive examples and 50%
negative ones. Using this dataset, we train a classifier. The
random prediction on this dataset cannot achieve more than
50% accuracy. We train an `2-Regularized Logistic Regres-
sion using 10-fold cross validation and obtain an accuracy of
96.42%, an AUC of 0.9932, and an F1-measure of 0.9644.

As there are no comparable methods, we evaluate the ef-
fectiveness of our approach by devising three baseline meth-
ods for comparison. When individuals are asked to detect
malicious users based on their usernames, they often look
for specific “keywords”, verify if the username looks “ran-
dom”, or look for “repetition of letters”. Hence, they form
our three baselines b1, b2, and b3:

• Baseline b1: Keyword Detection. We consider a
username malicious if it contains a specific keyword.
We use the same set of keywords used in Section 4.4.2
and train a classifier based on the single feature. b1
results in an AUC of 0.5140 and F1-measure of 0.66.

• Baseline b2: Username Randomness. For finding
username randomness, b2 uses the entropy of the user-
name as a feature. Using our data labels, we perform
logistic regression. b2 achieves an AUC of 0.700 and
F1-measure of ≈ 0.

• Baseline b3: Letter Repetition. Similar to the
procedure followed in baseline b2, in b3, we use the
maximum number of times a letter is repeated in the
username as a feature and train a logistic regression
model using our data labels. b3 achieves an AUC of
0.61 and an F1-measure of ≈ 0.

While the baseline performances demonstrate the diffi-
culty of our problem, the proposed approach outperforms
all baselines by at least 41%. The performance for our
approach, and baselines are summarized in Table 1. As
reference points, we also include in the table the perfor-
mance of recent state-of-the-art techniques for detecting ma-
licious users. These techniques have access to more infor-
mation compared to our methodology and do not employ
usernames; therefore, no improvement percentage will be
reported. Our approach, with usernames only, outperforms
these techniques. Next, we investigate if different learning
algorithms can further improve the learning performance.



Table 2: Malicious User Detection Performance for
Different Classification Techniques.

Technique AUC Accuracy

`2-Regularized `1-Loss SVM 0.9966 97.05%

`2-Regularized `2-Loss SVM 0.9913 96.05%

`2-Regularized Logistic Regression 0.9923 96.25%

`1-Regularized Logistic Regression 0.9971 97.26%

5.3 Choice of Learning Algorithm
To evaluate the choice of learning algorithm, we perform

the classification task using a range of learning algorithms
and 10-fold cross validation. The AUCs and accuracy rates
are available in Table 2. These algorithms have different
learning biases, and one expects to observe different perfor-
mances for the same task. While we observe a slight increase
in the performance, as shown in the table, results are not
significantly different across algorithms. This shows that
when sufficient information is available in features, the per-
formance is not sensitive to the choice of learning algorithm.

In our experiments, `1-Regularized Logistic Regression is
shown to be the most accurate method; therefore, we use it
in the following experiments as the method of choice.

In our previous experiments, we assumed that there is no
class imbalance between malicious and normal users. In re-
ality this distribution is skewed. Furthermore, unlike our
malicious users, all of our normal users are from one source
(Twitter). Thus, we need to verify how this decision influ-
ences our results. We analyze the sensitivity of our approach
to class imbalance and the distribution of normal users next.

5.4 Sensitivity Analysis
5.4.1 Sensitivity to Class Imbalance

In real-world networks such as Facebook and Twitter, the
percentage of malicious users in the population is approxi-
mated to be at most 10% [10,35]. In other words, for every
9 normal users there exists at most 1 malicious user. This
rate could be different across networks. Thus, we perform a
sensitivity analysis with respect to different ratios of mali-
cious users. We construct datasets, where α percent of the
dataset consists of malicious users and change α in the range
5 ≤ α ≤ 50. Values larger than 50 were not selected, be-
cause then we are assuming that malicious users are more
than the normal ones.

Because we collected more negative examples, we sample
the negative examples many times to guarantee that each
negative example is seen at least once. Thus, for each α,
many datasets are created. For each one of these datasets,
we perform classification and average the performance met-
rics over all datasets created for a specific α.

Figure 3 depicts the average performance (accuracy, AUC,
and F1-measure) of our methodology with different percent-
ages of malicious users. As shown in the Figure, as the
number of malicious users increase, AUC remains stable and
F1-measure and accuracy slightly drop, but in all cases, all
measures stay above 0.97.

5.4.2 Sensitivity to the Distribution of Normal Users
To determine the sensitivity of our classifier to different

normal users, we use samples of Facebook users instead

Figure 3: Performance (AUC, F1, and Accuracy)
of our methodology for Different Percentages of
Malicious Users.

Figure 4: Performance Measures (F1, AUC, and
Accuracy) of our Methodology for Different
Percentages of Malicious Users when Facebook
Identities were used instead of Normal Users.

of our normal users in training. Facebook users are not
completely normal and Facebook approximates that around
1.5% of its users are malicious [35]. If our classifier can detect
Facebook malicious users, some positive instances (Facebook
users) will be classified as negative (malicious). Hence, the
performance is expected to slightly decrease. In theory, for
all datasets that have at most 50% negative examples (ma-
licious users) and Facebook users as positive examples, one
expects at most a 50%× 1.5% = 0.0075 decrease in accuracy.
Our experiments verify this expectation. Figure 4 plots the
performance (accuracy, AUC, F1-measure) of the algorithm
with different percentages of malicious users and using Face-
book users as positive examples. We notice a slight drop in
performance for all measures, but the performance remains
high and is never below 0.9671. For comparison, we include
the performance measures with the original normal users.
Comparing the performance measures with those of normal
users, we notice that the accuracy drops by at most 0.0035
(less than the expected maximum: 0.0075), AUC drops by
at most 0.0012, and F1-measure drops by at most 0.0036.

In our experiments, we employ all 1,413 features to detect
malicious users. Designing 1,413 features and computing
their values is computationally expensive. Hence, we empir-
ically determine whether all features are necessary next.

5.5 Feature Importance Analysis
Here, we analyze how important different features are in

learning the malicious user detection function. In other



Table 3: Malicious User Detection Performance for
Different Groups of Features.

Feature Groups AUC Accuracy

Complexity-based 0.8032 83.16%
Demographic-based 0.9342 86.78%
Anonymity-based 0.7219 63.26%
Similarity-based 0.9933 95.86%
Efficiency-based 0.9299 87.19%

words, we find features that contribute the most to the clas-
sification task. This can be performed by standard feature
selection measures such as Information Gain, χ2, among oth-
ers. Here, we use the χ2 statistic to find the top features.
The top 10 features in decreasing order of importance are:

1. The information surprise of the username
2. The number of digits used in the username.
3. The percentage of keys pressed on the top row of a

QWERTY keyboard when typing the username.
4. The percentage of keys pressed on the top row of a

DVORAK keyboard when typing the username.
5. The proportion of digits used in the username.
6. The approximate distance (in meters) traveled for typ-

ing a username with a DVORAK keyboard.
7. The percentage of keys pressed on the home row of

QWERTY keyboard when typing the username.
8. The approximate distance (in meters) traveled for typ-

ing a username with a QWERTY keyboard.
9. The percentage of keys pressed on the bottom row of

a DVORAK keyboard when typing the username.
10. Entropy of the username.

We notice that the complexity of the username is the most
important feature and that 6 of the top 10 features are fea-
tures that capture typing patterns. Using only these 10 fea-
tures, we trained a logistic regression model and achieved
an accuracy of 92.95% and an AUC of 0.973.

We also determine groups of features that contribute most
to the classification. We divide features into groups based on
the characteristic of malicious users they represent. We de-
note these features based on the discussion in Section 4 as (1)
Complexity-based, (2) Demographic-based, (3) Anonymity-
based, (4) Similarity-based, and (5) Efficiency-based. Table
3 summarizes the classification performance obtained using
only these groups of features.

We observe that similarity-based features work the best
and anonymity-based features are least effective. Note that
similarity-based features are in general hard to construct as
they require n-gram constructions. Surprisingly, efficiency-
based or complexity-based features that are easier to com-
pute, can classify malicious users accurately, with up to 87%
accuracy. Our observations in this section allows users with
limited time and resources to take informed decisions on the
features and groups of features to construct.

6. CONCLUSIONS AND FUTURE WORK
In this research, we have introduced a methodology that

can identify malicious users with minimum information. Our
methodology looks into different characteristics of malicious
users and systematically constructs features that can cap-
ture traces of malicious behaviors. With new theories on
characteristics of malicious users, new features can be intro-
duced into our methodology.

We categorize characteristics of malicious users into 5 gen-
eral categories. In particular, malicious users can be (1)
complex and diverse, (2) demographically biased, (3) anony-
mous, (4) self-similar, and (5) efficient. A malicious user
can exhibit one or a combination of these characteristics.
By introducing comprehensive features across these five cat-
egories, we train a learning framework that can detect mali-
cious users. The evaluation of this framework demonstrates
the effectiveness of this systematic approach.

We notice some interesting observations. First, we no-
tice that usernames that carry approximately 10 bits of in-
formation surprise, are more likely owned by normal users.
Second, with only minimum information, one can achieve
an accuracy of 97%, an AUC of 0.9971, and robust perfor-
mances with different class imbalances and irrespective of
the learning algorithm. Finally, we identify that in case of
limited time or resources, one can implement a limited set
of features and obtain reasonable accuracy rates.

The findings in this paper have many implications. First,
we note that our methodology is in general easy to imple-
ment with minimum dependency on the availability of in-
formation. Second, our methodology works with usernames
from different sites. This is empirically shown in our exper-
iments with usernames collected from a variety of sites. Fi-
nally, our methodology performs with reasonable accuracy,
compared to state-of-the-art techniques that have access to
additional information.

Future work of this research includes integrating addi-
tional information available across sites in a principled man-
ner. However, this extension requires considering the het-
erogeneity of data available across sites. In addition, similar
to the observation we had regarding the information surprise
values of usernames, we are interested in how surprise values
change for other content generated by users.
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