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ABSTRACT
Link prediction aims to predict whether two nodes in a network

are likely to get connected. Motivated by its applications, e.g., in

friend or product recommendation, link prediction has been ex-

tensively studied over the years. Most link prediction methods

are designed based on specific assumptions that may or may not

hold in different networks, leading to link prediction methods that

are not generalizable. Here, we address this problem by proposing

general link prediction methods that can capture network-specific

patterns. Most link prediction methods rely on computing similari-

ties between between nodes. By learning a 𝛾-decaying model, the

proposed methods can measure the pairwise similarities between

nodes more accurately, even when only using common neighbor

information, which is often used by current techniques.
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• Mathematics of computing → Graph algorithms; • Infor-
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1 INTRODUCTION
Networks have become widespread and are growing in size across

various disciplines. Network-based problems have been extensively

studied in recent years with examples such as representation learn-

ing [26], community detection [8], visualization [5], and the like.

Akin to how new friendships are formed between people in real

world, many networks evolve over time with new edges appearing,

motivating researchers to predict future links [16]. Link prediction

methods aim to solve this problem, and are widely used in social

networks [15], biological networks [2], and dynamic networks such

as e-mail or communication networks [19].
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Most link prediction methods have shown remarkable perfor-

mance in social networks research. Justified by theoretical findings

in social sciences and extensive empirical studies, researchers have

developed many similarity-based link prediction methods that can

measure how likely a link will appear between two nodes given

their similarity. This abstract similarity can be as simple as the num-

ber of common neighbors between two nodes [15], or the Jaccard
similarity [10] between their one-hop neighborhoods (i.e., friends).
Such similarity-based link prediction methods are widely used in

recommender systems for social/product networks [22], or when

seeking collaborators in collaboration networks [21].

However, new links appear for various reasons within graphs,

and some reasons are indeed exogenous to the graphs. Even within

a specific social network, it is difficult to determine the importance

of different factors (i.e., similarity measures) such as the number of

common neighbors, degrees, path lengths, and the like on the for-

mation of new links. Hence, one often faces the elusive problem of

selecting the “best" similarity measure for link prediction methods,

which is often addressed by testing various similaritymeasures. One

solution to this problem is to build a supervised combination of var-

ious similarity measures. An alternative solution is to directly learn

the link formation patterns from the network. For instance, Zhang

and Chen [27] propose a neural network link prediction method,

which operates by encoding various neighborhoods in the graph as

inputs to train a neural network. Due to higher computation cost,

both solutions cannot completely replace similarity-based methods,

which are fast, when dealing with large-scale social networks.

The Present Work. We introduce links prediction methods that

are fast, but also generalize across graphs. To the best of our knowl-

edge, we introduce the first of such link prediction methods. Our

work is inspired by the recent study of Dong et al. [7], which studies

the impact of the common neighbors on link existence across mul-

tiple networks. Instead of designing a new similarity measure, we

explore the reasons behind the success of past similarity measures.

In particular, recently Zhang and Chen [27] proposed a 𝛾-decaying

model that can explain how the overlap between the 𝑘-hop neigh-

borhoods of two nodes becomes exponentially less important in

forming a link between them as 𝑘 increases. This result shows that

the common neighbors of two nodes (i.e., 𝑘 = 1) are the most im-

portant when designing link prediction similarity measures, which

explains the success of many link prediction similarity measures.

This paper takes this result even further and shows that this decay-

ing phenomenon not only exists with respect to the nodes shared

within the 𝑘-hop neighborhoods, but also with respect to how these

nodes are connected. Most importantly, we show that the way com-
mon neighbors of two nodes are connected has a major impact on the
formation of a new link between them. Dong et al. [7] had similar

findings. Overall, we make the following contributions:
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Figure 1: Comparing Link Formation Probabilities (> symbol) for Different Common Neighbor Graphs (the first number 𝑛
is the number of nodes and the second is the graph index (see footnote) among graphs with 𝑛 nodes). Here, only common
neighbors are shown and the two nodes who share these common neighbors (are connected to all of them) are not shown.

(1) For the first time, we quantify the relation between how com-

mon neighbors are connected and link formation probabilities;

(2) We explain such relationships by a 𝛾-decaying model;

(3) We incorporate our findings into two (one supervised and one

unsupervised) new link prediction methods; and

(4) We evaluate the developed methods and show that they can

significantly outperform current link prediction measures.

2 RELATEDWORK
Among link prediction methods, similarity-based methods have

a relatively longer history and are widely used in different appli-

cations. These methods measure the chance of two nodes getting

linked based on their ‘similarity’, which can be measured using

network information. Similarity-based method (or indices) can be

further divided into local and global methods.

Local methodsmeasure the similarity of two nodes based on their

neighborhood information, usually one-hop (friends) or two-hop

(friends-of-friends) neighborhoods. Themost basic andwell-studied

measure is the Common Neighbor index, which is basically the num-

ber of neighbors shared among two nodes. The measure is also used

in many other measures. In their classical paper, Liben-Nowell and

Kleinberg [15] show that the common neighbor index performs

surprisingly well for link prediction in social networks. TheAdamic-
Adar Index [3] is another well-established local similarity measure,

which penalizes common neighbors by their degrees. Besides these,

there are many other local similarity-based methods developed for

various contexts and objectives. To name a few, Resource Allocation
Index [28] models connections as the resource transmitted from

one node to another through common neighbors, and Preferential
Attachment Index [4] assumes link formation between two nodes re-

lies on their probability of getting connected in scale-free networks.

Classical similarity measures can also be used as local methods for

link prediction, e.g., Jaccard Index [10] andMutual Information [23].
On the contrary, global methods use the topology information of

the whole network to score each potential link, often by using infor-

mation on paths. Katz Index [12] and Global Leicht-Holme-Newman
Index [14] count a weighted total of all possible paths between

two nodes. Random walk based methods (e.g., PageRank [20] and

SimRank [11]) measure similarity using random walk visiting prob-

abilities starting from pairs of nodes. While global methods have

performed quite well on link prediction, the complexity of explor-

ing the whole graph hinders their use on large networks. As nicely

pointed out by Bliss et al. [6], all link prediction similarity measures

are heuristics based on some assumptions, where each similarity

may have some level of impact on the formation of new links.

Other than similarity scores, which are unsupervised, there are

also supervised link prediction methods. By formulating link predic-

tion as a binary classification problem, traditional classifiers such as

Bayesian classifiers or deep learning methods can be used to train

a link prediction model, where features are graph properties [9].

3 INFLUENCE OF COMMON NEIGHBOR
GRAPH ON FORMATION OF NEW LINKS

Common neighbors play an important role in most heuristics used

for predicting links in social network. These heuristics either di-

rectly use the number of common neighbors (e.g. Common Neigh-
bor [15] and Adamic-Adar [3]), or are indirectly influenced by the

common neighbors (e.g. Katz [12] and SimRank [11]). Through ex-

tensive experiments on various social networks (we skip the details

for brevity), we discover that common neighbors contain much

more information than their sole counts. In particular, we demon-

strate how the induced subgraph formed by common neighbors

of two nodes, which we denote as the Common Neighbor Graph
influences new link formations. We present our findings using one

of our timestamped datasets, Facebook-links [1, 25] as an exam-

ple, where we analyze the impact of the structure of the common

neighbor graph on probabilities of new links appearing. We observe

similar results in other datasets.

Figure 1 presents some typical observations
1
of new links ap-

pearing in a common neighbor graph, which we summarize as

(1) Increase in the number of common neighbors (the size of the

common neighbor graph) in general increases the probability

of new links forming between two unconnected nodes;

(2) Isolated components in common neighbor graph have a nega-

tive effect on link formation (Figure 1 a, b); and

(3) High eccentricity (maximum distance of one node to others)

also lowers probabilities of forming new links (Figure 1 c, d).

These insights confirm and extend those given by Dong et al. [7].

1
Graph index is available at https://www.graphclasses.org/smallgraphs.html
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4 PROPOSED METHODS
In this section, we use the observations in Section 3 and combine

them with the foundation of current link prediction methods to

design novel and generalizable link prediction techniques. While

current link prediction techniques are many, recent findings have

shown that current link prediction heuristics can often be unified

in terms of an influence decaying model controlled by some decay

parameter [27]. We briefly review this influence decay model first.

Next, we propose a conceptual overview of our link prediction

approach and present two link prediction techniques: (1) a sim-

ple unsupervised approach which involves influence decay, is fast,

but not tunable for different networks and (2) a supervised model,

whose parameters can be properly trained for different networks.

4.1 The Influence Decaying Model
With various empirical studies demonstrating the success of link

prediction methods, there has been some recent attempts in terms

of identifying theories that can explain how these methods capture

the nature of social networks. One general explanation is given by

the 𝛾-decaying heuristic. The heuristic states that (1) most current

similarity measures can be unified in terms of an influence function

decaying on the orders of neighborhood expansions, i.e., 1-hop,

2-hop, . . . , 𝑛-hop neighborhoods, and (2) high-order link prediction

heuristics, which use neighborhood information on more number

of hops, can be accurately approximated using small orders of

neighborhood information. A 𝛾-decaying heuristic 𝐻 for nodes

(𝑥,𝑦) is defined as

𝐻 (𝑥,𝑦) = 𝜂

∞∑
𝑙=1

𝛾𝑙 𝑓 (𝑥,𝑦, 𝑙), (1)

where 𝑙 is the heuristic order, 𝑓 is a non-negative function of 𝑥,𝑦, 𝑙 ,

value 𝛾 is a positive decay factor, and 𝜂 is a positive constant or a

positive function of 𝛾 .

A 𝛾-decaying heuristic could model many common link predic-

tion similarity measures such as Common Neighbor [15], Katz [12],
PageRank [24], and the like (see [27] for details). This influence

decaying function has been used to model the impact of neighbor-

hood expansions on link candidates. However, as shown by our

observations in Section 3, there exists another decaying pattern just

within a one-hop neighborhood (common neighbors), where there

is a decay in link formation probabilities as distances between com-

mon neighbors increase. From a computational perspective, this

observation is much more useful as computing various measures

for common neighbors tends to be fast, even for large graphs.

A Conceptual Framework for Link Prediction. We propose a

general conceptual model to incorporate our discussion and exploit

common neighbor graph information for link prediction. We posit

that the link formation probability between two unlinked nodes can

be defined in terms of two component: (1) an individual component,

which models the impact that different nodes in the graph can have

on connecting two unlinked nodes. Past link prediction measures,

such as the number of common neighbors, can be considered an

example of this component, and (2) a community component, which

measures communities potentially formed as a result of this new

link formation, modeling our observations in Section 3. Hence, a

similarity measure to model this conceptual framework will be

𝑆𝑖𝑚(𝑢, 𝑣) = individual component + community component. (2)

Using this conceptual model, we propose two link prediction tech-

niques, where one is unsupervised and simple, and the other is

supervised; hence, requires training, but is more accurate.

4.2 An Unsupervised Approach
To introduce an unsupervised approach, we basically define a simple

similarity measure that captures the decaying phenomenon and

our empirical observations. Same as the Common Neighbor [15]
measure, which only has an individual component that measures

the number of common neighbors, our measure only involves a

community component capturing connections between common

neighbors. Our measure is inspired by closeness centrality:

Definition 4.1. For node 𝑖 , its closeness centrality 𝐶 (𝑖) is 𝐶 (𝑖) =∑
𝑗

1

𝑑 (𝑖, 𝑗) , where 𝑑 (𝑖, 𝑗) is the distance from node 𝑖 to node 𝑗 .

To design our measure, we add a decaying function to pairwise

geodesic distances of common neighbors,

𝑆𝑖𝑚(𝑢, 𝑣) =

∑𝑖≠𝑗

𝑖,𝑗∈|𝐶𝑁 (𝑢,𝑣) | 1/𝑑 (𝑖, 𝑗)
|𝐶𝑁 (𝑢,𝑣) |−1 , if |𝐶𝑁 (𝑢, 𝑣) | > 1;

0, otherwise,

(3)

where 𝐶𝑁 (𝑢, 𝑣) denotes the common neighbors of 𝑢 and 𝑣 , and

𝑑 (𝑖, 𝑗) is the distance between 𝑖 and 𝑗 . As the decaying factor cannot

be learned from actual graphs in an unsupervised fashion, we simply

select 1/𝑥 as the decay function 𝑓 in Eq. (1) (similar to closeness

centrality), while any other decay functions could also be used. We

normalize this similarity by dividing it by the number of common

neighbors, which ensures its scale is at the same level (at most

1/2) of the number of common neighbors. Note that 𝑛 common

neighbors have

(𝑛
2

)
= 𝑛(𝑛 − 1)/2 pairwise distances. So, for each

common neighbor, we count its community influence as the average

distance from it to other (|𝐶𝑁 (𝑢, 𝑣) | − 1) common neighbors.

We ignore the individual component when designing the unsu-

pervised similarity measure for the following two reasons: (1) it

is difficult to balance the relationship between the individual com-

ponent and community component without looking at the graphs;

and (2) we have already included the individual component to some

extent by scaling the measure to be within the number of common

neighbors scale. Our goal was to ensure the measure is as simple

as possible, yet capturing the community aspect of link prediction.

Our performance results in Section 5 show that this simple measure

significantly outperforms current similarity measures.

4.3 A Supervised Approach
With the understanding that different graphs have various traits,

we define a complete adaptive link prediction model, defined as:

𝑆𝑖𝑚(𝑢, 𝑣) =𝛼
|𝐶𝑁 (𝑢,𝑣) |

2
+ (1 − 𝛼)

∑𝑖≠𝑗

𝑖,𝑗∈|𝐶𝑁 (𝑢,𝑣) | 𝛾
𝑑 (𝑖,𝑗 )

|𝐶𝑁 (𝑢,𝑣) |−1 , if |𝐶𝑁 (𝑢, 𝑣) | > 1;

𝛼
|𝐶𝑁 (𝑢,𝑣) |

2
= 𝛼/2, otherwise,

(4)

where 𝛼 ∈ [0, 1] is a weight that balances the contributions

of individual/community components, and 𝛾 ∈ (0, 1) is a decay

parameter. These two parameters have to be learned from training

data. A smaller 𝛼 indicates higher community influence, and when

𝑢 and 𝑣 have only one common neighbor, we only have individual



Graphs CN AA RA J Katz Proposed Methods
Unsupervised Supervised

Facebook-links [1] 0.5713 0.5928 0.5657 0.5460 0.5691 0.6594 0.6594
Bitcoin-Alpha [13] 0.5862 0.6017 0.5869 0.3802 0.6515 0.6640 0.6587

Flickr [18] 0.5621 0.5737 0.5848 0.5223 0.5507 0.5964 0.5698

Youtube [17] 0.6665 0.6738 0.6608 0.4781 0.6899 0.7084 0.7083

Table 1: The performance of the proposed methods (AUC
values) compared to common techniques. The proposed
techniques significantly improve other measures.

influence. We can prove that 𝛼 = 0.5 ensures equal contribution

when number of common neighbors is greater than one.

Proof. When individual influence and maximum community

influence (a complete common neighbor graph: 𝑑 (𝑖, 𝑗) = 1) is equal:

𝛼
|𝐶𝑁 (𝑢, 𝑣) |

2

= max

𝑑 (𝑖, 𝑗),𝛾
(1 − 𝛼)

∑𝑖≠𝑗

𝑖, 𝑗 ∈ |𝐶𝑁 (𝑢,𝑣) | 𝛾
𝑑 (𝑖, 𝑗)

|𝐶𝑁 (𝑢, 𝑣) | − 1

, (5)

which can be solved as 𝛼 = 0.5. □

5 CASE STUDY: LINK PREDICTION
We evaluate the performance of the proposed methods on multiple

time-stamped real-world social networks (friendship networks or

trust networks), compared with various well-known link prediction

measures: Common Neighbor (CN), Adamic-Adar (AA), Resource

Allocation (RA), Jaccard (J), and Katz. Calculating pairwise sim-

ilarities for the whole graph can be extremely time consuming,

especially for global method like Katz. When link prediction is

performed on graph 𝐺 = (𝑉 , 𝐸), we have
( |𝑉 |
2

)
− |𝐸 | potential link

candidates. To save time, we first split the edges in order of times-

tamps to 90% for training and 10% as testing. Then, we include all

edges in test set as positive class, while selecting same amount of

missing edges as negative class.
2

If we select negative class at random, the performances of most

methods are similar since majority of negative candidate pairs

have no similarity with each other. To test the ability of measuring

similarities of ‘similar’ pairs, we select negative class by the criteria

of ‘at least one common neighbor’. we learn parameters 𝛼 and 𝛾

by grid search. The results are in Table 1, clearly showing that

proposed methods outperform all others.

6 CONCLUSION AND FUTUREWORKS
In this paper, for the first time, we quantify the influence of struc-

tural information of common neighbors on formation of new links.

We find that number of common neighbors, number of isolated

components, and distances between nodes within common neigh-

bor graph impact link formation probabilities. We propose two new

link prediction measures (supervised and unsupervised) that incor-

porate these observations. Our experimental results on real-world

data show that the developed methods can outperform existing

techniques, while being simple to implement.
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