
Noise-Enhanced Community Detection
Reyhaneh Abdolazimi

rabdolaz@data.syr.edu

Data Lab, EECS Department

Syracuse University

Shengmin Jin

shengmin@data.syr.edu

Data Lab, EECS Department

Syracuse University

Reza Zafarani

reza@data.syr.edu

Data Lab, EECS Department

Syracuse University

ABSTRACT
Community structure plays a significant role in uncovering the

structure of a network. While many community detection algo-

rithms have been introduced, improving the quality of detected com-

munities is still an open problem. In many areas of science, adding

noise improves system performance and algorithm efficiency, moti-

vating us to also explore the possibility of adding noise to improve

community detection algorithms. We propose a noise-enhanced

community detection framework that improves communities de-

tected by existing community detection methods. The framework

introduces three noise methods to help detect communities better.

Theoretical justification and extensive experiments on synthetic

and real-world datasets show that our framework helps community

detection methods find better communities.

CCS CONCEPTS
• Information systems→ Data mining;

KEYWORDS
Community Detection, Noise-Enhanced Methods, Graph Mining.

ACM Reference Format:
ReyhanehAbdolazimi, Shengmin Jin, and Reza Zafarani. 2020. Noise-Enhanced

Community Detection. In Proceedings of the 31st ACM Conference on Hyper-
text and Social Media (HT ’20), July 13–15, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3372923.3404788

1 INTRODUCTION
Communities are observed in many real-world networks: sets of

nodes with higher internal density within each set than between

them [6]. Communities carry various insights. In biological net-

works, communities represent functional units of cells [38]; in sci-

entific collaboration networks, communities denote scientists with

similar research interests [36]; and in social networks, communities

are groups of friends with similar interests or backgrounds [11].

To detect communities more accurately and efficiently in net-

works, research has focused on designing new community detection
algorithms [3, 6, 11, 28, 29, 35, 37]. Instead of designing new algo-

rithms, an unexplored alternative to improve communities detected

is to modify the input data to such algorithms: the network.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HT ’20, July 13–15, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7098-1/20/07. . . $15.00

https://doi.org/10.1145/3372923.3404788

1

2 3 4 5 6 7 8

9

10

(a) original graph

1

2 3 4 5 6 7 8

9

10

(b) noisy graph

Figure 1: Detected Communities (ovals) before (a) and after
(b) adding noise (dashed edge) using the same community
detection algorithm (Leading Eigenvector method). Adding
noise edge (3, 5) in (b) helps find better communities, as ob-
served by 30% decrease in the value of community detection
objective function (edge cut, here).

A natural approach to modify data is to introduce noise. While

noise is often unwanted and uncontrollable, and attempts are made

to remove or reduce its effects, it has been shown beneficial in many

areas of science, especially in nonlinear information processing

systems [5]. Noise enhancement has long been used in physical

systems as stochastic resonance and has also shown promise in areas

such as stochastic optimization, image processing, and machine

learning [2, 5, 32, 34]. Such benefits of adding noise have motivated

us to explore the possibility of enhancing community detection by

adding noise. Adding noise introduces an extra step to the existing

algorithms. This extra noise injection step introduces a degree of

randomization to the algorithms. A natural way to introduce noise

in a network is to add edges as it allows one to systematically

compare the detected communities in noisy and noiseless networks.

To provide some intuition on how adding noise can improve

community detection, we provide an example. Consider the graph

in Figure 1a with 10 nodes and 10 edges. In this graph, we can

detect three communities (shown with ovals) using the Leading

Eigenvector community detection method [29]: {1, 2, 3, 4}, {5, 6, 7},
and {8, 9, 10}. We can evaluate these communities using a commu-

nity detection objective function. Here, we use edge cut [19] and
obtain an edge cut value of 1.3. We add a single noise edge (3, 5) to
the graph (the dashed line) to get the noisy graph in Figure 1b. The

same Leading Eigenvector method now detects two communities

in this noisy graph: {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}. The added noise

not only leads to finding fewer communities but also better ones,

as the edge cut value for these new communities in the original

graph is 1, a %30 decrease over the initial value of 1.3.

Noise-Enhanced Community Detection. In this paper, we in-

vestigate noise-enhanced community detection. We propose a sim-

ple framework to improve communities in an undirected unweighted

network by adding noise, as outlined in Algorithm 1. Our approach

is iterative (to account for noise randomness). In each iteration,

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

271

https://doi.org/10.1145/3372923.3404788
https://doi.org/10.1145/3372923.3404788

Algorithm 1 Noise-Enhanced Community Detection

1: Input: Graph 𝐺 , Noise Injection Method Noise
Community Detection Method CD,
Objective Function Obj, Iterations.

2: Output: Noise-enhanced communities 𝐶best
3: 𝐶0← CD(𝐺)
4: 𝑂0← Obj(𝐶0, 𝐺)
5: 𝑂

best
← 𝑂0

6: 𝐶
best
← 𝐶0

7: for 𝑖 = 1 to Iterations do
8: �̃�𝑖 ← Noise(𝐺)
9: 𝐶𝑖 ← CD(�̃�𝑖)

10: 𝑂𝑖 ← Obj(𝐶𝑖 , 𝐺)
11: if 𝑂𝑖 improves compared to 𝑂

best
then

12: 𝑂
best
← 𝑂i

13: 𝐶
best
← 𝐶i

14: return 𝐶
best

we build a noisy network by adding noise (edges) to the origi-

nal graph, and we detect communities in this noisy network. We

then evaluate the communities detected in the original graph using

some objective function. We iterate a few times and return the

best communities detected, e.g., with the highest objective function

value, as the noise-enhanced communities. Compared to commu-

nities detected in the original graph, our goal is to detect better

communities (in terms of some objective function) while injecting

limited noise, i.e., without significantly increasing the community

detection execution time. Overall, we aim to answer two questions:

Q1. Does adding noise improve the performance of community

detection algorithms? If it does, to what extent injecting noise

will improve detected communities?

Q2. Injecting noise increases the cost of finding communities.

Are the improvements justifiable relative to the potential

improvements to detect communities? What is the trade-off?

By addressing these questions, at a high level, our frameworkmakes

the following contributions:

• We introduce noise-enhanced community detection, a frame-

work to improve current community detection methods by

introducing noise;

• We introduce three methods to add noise to a graph. These

methods can be used as a preprocessing step to improve

existing community detection algorithms (Section 3);

• We provide a theoretical foundation for noise-enhanced com-

munity detection by proving that the suggested noise injec-

tion methods improve common community detection objec-

tive functions under different scenarios (Section 5); and

• We evaluate our framework on various real-world and syn-

thetic networks using well-established community detection

methods. Our results show that adding noise to networks

allows one to detect better communities compared to those

detected in the original graphs (Section 6).

2 LITERATURE REVIEW
While to the best of our knowledge, there has been no attempts

to enhance community detection by adding noise, our framework

broadly relates to research on (I) community detection and (II)

noise-enhanced systems.

CommunityDetection. There aremany techniques to detect com-

munities in networks. Here, we focus on the more common com-

munity detection methods and group them into the following four

categories (refer to Ref. [8] for a comprehensive review).

I. Hierarchical methods are suitable for networks with hierarchical

structure, and can be grouped into: (1) agglomerative and (2) divi-

sive methods [8]. Agglomerative methods iteratively merge com-

munities with sufficiently high similarity and divisive algorithms

iteratively split communities by removing edges that connect ver-

tices with low similarity. A well-known divisive algorithm is the

one proposed by Girvan and Newman [31], which splits commu-

nities by computing edge betweenness. The algorithm is compu-

tationally expensive, and cannot be applied to large networks. A

well-known agglomerative method is FastGreedy, which iteratively

merges groups of nodes by using a greedy technique [28]

II. Modularity-based methods optimize modularity, a community

quality measure, to obtain better communities [8]. These methods

mostly belong to one of four categories: (1) greedy methods [28], or

those that are based on (2) simulated annealing [12], (3) extremal

optimization [7], or (4) spectral optimization [29]. A fast greedy

method from this category is the Louvain method [3], which hier-

archically optimizes modularity.

III. Spectral methods rely on the rich foundation in spectral graph

theory to detect communities [8]. A well-known example is the

Leading Eigenvector method [29], which using spectral bisection

splits a network into groups while minimizing edges between them.

IV. Dynamic methods detect communities by running a dynamical

process on the network. These algorithms are mostly based on

random walks [35], spin dynamics [39], or synchronization [1].

WalkTrap [35], a popular method from this category, relies on

random walks to compute similarities between nodes, which in

turn are used to detect communities via hierarchical clustering.

As our goal is to add an extra noise injection step to the commu-

nity detection process, we experiment with well-known represen-

tatives from each community detection category as we will detail

in our experiments.

Noise-Enhanced Systems. Adding noise enhances performance

in many areas [5]. We review some here.

I. Stochastic Resonance (SR) is observed when increasing random

noise improves signal detection performance [22]. SR is frequently

used in noise-enhanced information systems with examples in

biological, physical, and engineered systems [10, 23, 24].

II. Image Processing also benefits from noise enhancement. Adding

noise to images before thresholding can improve the human brain’s

ability to perceive noisy visual patterns [42]. Adding noise can also

improve image segmentation [16], image re-sampling detection

[26], and image resizing detection [25]. As an example, adding an

appropriate amount of noise can result in more accurate detection

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

272

of micro-calcifications in mammograms, which in turn can lead to

early breast cancer diagnosis [44].

III. Signal Detection. Noise can help improve the detectability of

signals. For example, when detecting a constant signal in a Gaussian

mixture noise background, some white Gaussian noise can improve

the performance of the sign detector [15]. Additive noise can also

help detect a weak sinusoid signal more efficiently [46].

IV. Optimization. In search algorithms, when searching for an opti-

mum is likely to get trapped in local minima, randomization helps

finding optimal or near-optimal solutions. For example, the random-

ization in both crossover and mutation steps of Genetic Algorithms

(GA) [43] helps avoid self-similarity in the population, i.e., helps

avoid local minima [5]. The role of mutation is similar to adding

noise and often a suitable mutation rate can improve performance.

V. Machine Learning. Noise can help reduce the convergence time

in many clustering and competitive learning algorithms [32]. It can

also decrease the convergence time of backpropagation algorithm,

when training convolutional neural network [2]. This happens as

backpropagation and some clustering algorithms such as 𝑘-means

can be thought of as special cases of Expectation-Maximization

(EM) algorithm [33], which improves by adding noise.

3 NOISE INJECTION METHODS
According to Algorithm 1, our framework follows three steps: first,

some noisy edges are added to the graph. Then, communities are

identified in the noisy graph using a community detection algo-

rithm. Finally, the detected communities are evaluated using an

objective function. Note that the objective function is evaluated

on the original graph instead of the noisy graph to determine im-

provements due to noise (line 10 in Algorithm 1). To systematically

analyze noise enhancement in community detection, we experi-

ment with various community detection methods and objective

functions. To add noise to graphs, we introduce three general ways.

Our noise injection methods focus on high degree nodes. In Sec-

tion 5, we theoretically justify this decision where we show the

importance of [disconnected] high degree nodes in detecting com-

munities. Furthermore, empirical findings have shown that com-

munities are more likely to contain more high degree nodes [27].

Informally, our results show that if a high degree node is not con-

nected to another high degree node, by connecting it, we strengthen

the within-community connections, and make it easier for commu-

nity detection algorithms to detect the communities.

Therefore, in the proposed noise methods, we perform the fol-

lowing common steps: (1) we sort nodes based on their degrees, (2)

we select the top 𝑝 percent of sorted nodes as candidates, and (3)

we add edges within candidates if those edges do not exist. To add

edges, we select pairs of nodes (edge endpoints) from candidates.

The proposed methods vary in how such pairs of nodes are selected.

I. Random Noise (Random). Edge endpoints are randomly chosen

from the candidates. Before adding a noise edge, we ensure that it is

not in the graph. If the number of candidates equals the number of

nodes, Random simply connects nodes irrespective of their degrees.

II. Weighted Noise (Weighted). We select node (edge endpoint)

𝑣𝑖 with probability 𝑃Weighted (𝑣𝑖) that depends on its degree and

that of other candidate nodes:

𝑃Weighted (𝑣𝑖) =
𝑑𝑖∑𝑛
𝑗=1 𝑑 𝑗

,

where 𝑑𝑖 denotes the degree of node 𝑣𝑖 , and 𝑛 is the number of

candidate nodes.

III. Frequency Noise (Frequency). Nodes are selected based on

the degree distribution of the candidates, where nodes whose de-

grees are more frequent, are less likely to be selected:

𝑃Frequency (𝑣𝑖) =
1 − 𝑓𝑑𝑖 /𝑛

𝑓𝑑𝑖 ×
∑𝑘
𝑑=1
(1 − 𝑓𝑑/𝑛)

, (1)

where 𝑓𝑑𝑖 is the frequency of degree 𝑑 inside candidates and 𝑘 is

the maximum degree.

Time Complexity. The proposed noise methods include the

following steps in a graph with |𝑉 | nodes and |𝐸 | edges: Comput-

ing node degrees in 𝑂 (|𝐸 |), sorting nodes based on their degrees

in 𝑂 (|𝑉 | log |𝑉 |), selecting candidates in 𝑂 (1), calculating node

probabilities in𝑂 (|𝑉 |), and adding noise edges based on node prob-

abilities in𝑂 (|𝐸 |) (The number of noise edges is at most |𝐸 |). So, the
final time complexity introduced by adding noise is 𝑂 (|𝑉 | log |𝑉 |).

Example 3.1. Consider the graph shown in Figure 2 with 6 nodes
{𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 } with degrees {4, 1, 3, 2, 2, 2} and 7 edges. We sort nodes
based on their degrees {𝑎, 𝑐, 𝑑, 𝑓 , 𝑒, 𝑏}. Assume we select the top 70%
of these sorted nodes as candidates: {𝑎, 𝑐, 𝑑, 𝑓 }.

𝑎

𝑓 𝑐

𝑑

𝑒

𝑏

Figure 2: SampleGraph

Finally, we select pairs of nodes
among candidates as follows:

I. Random. Randomly selects pairs
of nodes and connects them, e.g., it
may add a noise edge between nodes
𝑑 and 𝑓 (dashed line in Figure 2).

II. Weighted. Nodes with higher degrees are more likely to be
selected so node 𝑎 with degree 4 has the highest probability. The prob-
abilities 𝑃Weighted (𝑣𝑖) for 𝑣𝑖 in {𝑎, 𝑐, 𝑑, 𝑓 } are {4/11, 3/11, 2/11, 2/11}.
III. Frequency. Nodes with less frequent degrees in candidates
are more probable to be selected. Hence, edge (𝑎, 𝑐) is the most likely
noise edge as nodes 𝑎, and 𝑐 with degrees 4 and 3 and 𝑓4 = 𝑓3 = 1

have the highest probability 𝑃Frequency (𝑎) = 𝑃Frequency (𝑐) = 3/8
to be chosen. The frequency of other candidate nodes are as follows:
𝑃Frequency (𝑑) = 𝑃Frequency (𝑓) = 1/8.

4 EXPERIMENTAL SETUP
In this section, we detail the datasets, how noise quantity was con-

trolled, candidates sizes selected, Q1 community detection methods

used, objective functions, and evaluation metrics.

I. Datasets.We study the impact of noise on community detection

in both synthetic and real-world networks:

(1) Synthetic Networks. To systematically verify our noise-enhanced

framework, we should be able to analyze it in networks with differ-

ent community structures. So, we use the well-established bench-

mark [17] proposed by Lancichinetti et al., which generates graphs

with different degree distributions and community sizes distribu-

tions. To create such benchmark graphs, we need to set the value

of several parameters, where we specifically followed suggestions

provided by [17] and created 32 datasets. The parameters are in

Table 2, where 𝑛 is the number of nodes, 𝛾 is the exponent of the

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

273

Table 1: Real-world Datasets Statistics

Type Network |𝑉 | = 𝑛 |𝐸 | =𝑚 Average
Degree

Clustering
Coefficient

Biological

Network

Bio-Dmela [40] 7,393 25,569 6.917 0.0119

Bio-Grid-Yeast [40] 6,008 156,945 104 0.163

Collaboration

Network

CAGrqc [18] 5,242 14,496 5.526 0.5296

Ca-HepTh [18] 9,877 25,998 5.259 0.4714

CA-HepPh [18] 12,008 118,521 19.74 0.6115

Social

Network

Fb-Athletes [18] 13,866 86,858 12.52 0.348

Fb-Government [18] 7,057 89,455 25.35 0.4534

Fb-Politician [18] 5,908 41,729 14.12 0.482

Fb-Company [18] 14,113 52,310 7.41 0.399

BlogCatalog [45] 10,312 333,983 64.77 0.4838

Road

Network

Euro roads [40] 1,174 1,417 2.4 0.0167

Minnesota roads [40] 2,642 3,303 2.5 0.01596

California roads [20] 21,048 21,693 2.06 0.25

Table 2: Synthetic Datasets Statistics
Graph size (𝑛) 𝛽 , 𝛾 Mixing Parameter (𝜇) Average Degree (𝐾)

1, 000 {[1, 2], [2, 3]} {0.1, 0.5} {5, 10, 15, 20}
10, 000 {[1, 2], [2, 3]} {0.1, 0.5} {15, 20, 25, 30}

power law degree distribution, 𝛽 is the exponent of the power law

distribution for community sizes, 𝜇 is the mixing parameter where

1− 𝜇 determines the fraction of links that each node shares with the

other nodes in its community, and 𝐾 is the average node degree.

(2) Real-world Networks: We also evaluate our framework with

real-world networks. For systematic analysis, we use 13 real-world

networks from four general category of networks: biological net-

works, collaboration networks, social networks, and road networks.

Table 1 provides the statistics of these real-world networks.

II. Noise Proportion.We characterize noise in terms of the proportion

of noise edges added, where noise increases the number of edges

in the graph by 𝑒 percent. For example, if there are 1,000 edges in

the graph, we can add 2% of current edges (20 edges) to the graph.

We vary 𝑒 values from 1% to 10% with 1% increments.

III. Candidates Size.As noted in Section 3, we select the top 𝑝 percent
of sorted nodes as candidates. We vary 𝑝 values from 10% to 100%

with 10% increments. When 𝑝 = 100%, all nodes are candidates.

IV. Community Detection Methods. Based on the review in Section 2,

we select four algorithms, each representing a category of commu-

nity detection methods: (1) FastGreedy from hierarchical methods,

(2) Louvain from modularity-based methods, (3) Leading EigenVec-

tor from spectral methods, and (4) Walktrap from dynamic methods.

All selected methods have shown great performance in extracting

high quality communities.

V. Objective Functions. There are two groups of objectives functions

for evaluating quality of communities (see Ref. [19] for details): (1)

multi-criterion scores, which consider both edges inside the commu-

nities and those crossing communities, and (2) single criterion scores,
which either consider inside edges, or crossing edges. To evaluate

the quality of communities, we select two objective functions from

each of the aforementioned categories; conductance [14, 41] and

normalized cut [41] from multi-criterion scores, modularity [30]

and edge cut [19] from single criterion scores.

VI. Evaluation Metrics. To assess noise enhancement, we measure

the following for each objective function:

• Expected First Success (EFS) is the expected number of

times (Iterations in Algorithm 1) that we need to add noise

to the network to ensure that we improve communities at least

once. For example, if we run Algorithm 1 for 100 iterations and

improve communities in 34 of these iterations, the Expected First

Success is 3 as
100

34
≃ 2.94. Formally, for objective function 𝑜𝑏 𝑗 :

EFS𝑜𝑏 𝑗 =

⌈
number of iterations

noise-enhanced iterations

⌉
• Relative Objective Improvement (ROI) is the relative objec-
tive value improvement after adding noise:

ROI𝑜𝑏 𝑗 =
𝑜𝑏 𝑗

noise-enhanced
− 𝑜𝑏 𝑗

original

𝑜𝑏 𝑗
original

× 100

Before performing experiments, we show that these objective

functions can in theory be improved next.

5 THEORETICAL ANALYSIS
In this section, we theoretically analyze noise-enhancement benefits

in community detection. We demonstrate that (1) adding a noise

edge between two high degree nodes will increase the chance of

re-partitioning a graph by assigning the two high degree nodes

to the same community in terms of the minimum normalized cut,

for which we provide a spectral analysis. As a result, we show

that (2) once a high degree node moves to the community of the

other, all objective functions in this study improve under some

constraints. Our setting can be generalized to multiple communities

and multiple nodes in these communities.

5.1 Spectral Analysis
We first provide a spectral analysis of adding an edge to a graph.

Before delving into the details, we quickly review the concepts of

the normalized Laplacian and the random walk transiton matrix.

Normalized Laplacian Matrix. For an undirected graph 𝐺 =

(𝑉 , 𝐸), the normalized Laplacian of𝐺 is thematrix𝐿 = 𝐼−𝐷−
1

2𝐴𝐷−
1

2 ,

where 𝐴 is its adjacency matrix and 𝐷 is its degree matrix. A nor-

malized Laplacian has a bounded spectrum, i.e. 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤
𝜆𝑛−1 ≤ 𝜆𝑛 ≤ 2, where 𝜆𝑖 ’s are the eigenvalues of 𝐿. The Laplacian

matrix have been used to investigate many useful properties of a

graph. Especially, by Cheeger’s inequality [4], the minimum nor-

malized cut of a graph is bounded by the second smallest eigenvalue

of the normalized Laplacian, i.e. 𝜆2. More specifically, the Cheeger

constant (the subset with the smallest conductance) ℎ(𝐺) satisfies:

𝜆2 ≤ ℎ(𝐺) = min

𝑆⊂𝑉
| (𝑥,𝑦) ∈ 𝐸, 𝑥 ∈ 𝑆,𝑦 ∉ 𝑆 |
𝑚𝑖𝑛(𝑣𝑜𝑙 (𝑆), 𝑣𝑜𝑙 (𝑉 \ 𝑆)) ≤

√
2𝜆2 , (2)

where 𝑣𝑜𝑙 (𝑆) is the volume of 𝑆 , the sum of degrees of nodes in 𝑆 .

RandomWalk Transition Matrix. The transition matrix of the

randomwalk on𝐺 = (𝑉 , 𝐸) is matrix 𝑃 = 𝐴𝐷−1. As 𝑃 is a stochastic

matrix, its spectrum is also bounded: 1 = 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑛−1 ≥
𝜇𝑛 ≥ −1, where 𝜇𝑖 ’s are the eigenvalues of 𝑃 . Matrix 𝑃 is similar
to 𝐷−

1

2𝐴𝐷−
1

2 (i.e., they have the same eigenvalues) and 𝐿 = 𝐼 −
𝐷−

1

2𝐴𝐷−
1

2 , so 𝜇𝑖 = 1 − 𝜆𝑖 , for 1 ≤ 𝑖 ≤ 𝑛. In this work, we define

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

274

the ℓ-th spectral moment𝑚ℓ of a graph 𝐺 using the spectrum of

its 𝑃 ,𝑚ℓ = E(𝜆ℓ), as 1

𝑛

∑𝑛
𝑖=1 𝜆𝑖

ℓ = E(𝜆ℓ). The spectral moments of

𝑃 have a property:𝑚ℓ is equal to the expected return probability

of a random walk of step ℓ starting at a node 𝑖 where 𝑖 is chosen

uniformly at random from 𝑉 . In our previous work [13], we prove

that𝑚2 = E(𝑑𝑖) E(1

𝑑𝑖𝑑 𝑗
), where E(𝑑𝑖) denotes the average degree

in the graph and 𝑑𝑖𝑑 𝑗 follows the joint degree distribution 𝑝 (𝑑𝑖 , 𝑑 𝑗):
the probability that a node with degree 𝑑𝑖 is connected to one with

degree 𝑑 𝑗 (refer to Ref. [13] for the proof details). To show how

adding a noise edge impacts the minimum normalized cut, we first

demonstrate how the spectral moment changes:

Theorem 5.1. Let graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) be obtained from graph
𝐺 = (𝑉 , 𝐸) by connecting nodes𝑢 and 𝑣 . Then,𝑚′

2
−𝑚2 =

2

(𝑑𝑢+1) (𝑑𝑣+1) ·
(1−E𝑥 :𝑥∼𝑢 (𝑑𝑣+1𝑑𝑥

) −E𝑦:𝑦∼𝑣 (𝑑𝑢+1𝑑𝑦
)), where 𝑑𝑢 , 𝑑𝑣 , 𝑑𝑥 , 𝑑𝑦 denote the

degree of the nodes 𝑢, 𝑣 , 𝑥 and 𝑦 in𝐺 , respectively, and 𝑥 ∼ 𝑢 denotes
that 𝑥 is 𝑢’s neighbor in 𝐺 and 𝑦 ∼ 𝑣 denotes that 𝑦 is 𝑣 ’s neighbor.

Proof. Clearly, |𝑉 ′ | = |𝑉 | and |𝐸 ′ | = |𝐸 | + 1. Based on our pre-

vious work [13],𝑚′
2
= E′(𝑑𝑖) E′(1

𝑑𝑖𝑑 𝑗
) and𝑚2 = E(𝑑𝑖) E(1

𝑑𝑖𝑑 𝑗
). As

only one edge is added, E′(𝑑𝑖) = 2 |𝐸′ |
|𝑉 ′ | =

2 |𝐸′ |
|𝑉 | . For E

′(1

𝑑𝑖𝑑 𝑗
), we no-

tice that the change is in two parts: (1) the newly added edge (𝑢, 𝑣)
which contributes

1

(𝑑𝑢+1) (𝑑𝑣+1) , and (2) for those edges which are

incident to 𝑢, as the degree of 𝑢 turns from 𝑑𝑢 to 𝑑𝑢 + 1, the overall
difference is

∑
𝑥 :𝑥∼𝑢 (1

𝑑𝑥𝑑𝑢
− 1

𝑑𝑥 (𝑑𝑢+1)) =
∑
𝑥 :𝑥∼𝑢 (1

𝑑𝑢 (𝑑𝑢+1)𝑑𝑥) =

𝑑𝑢 E𝑥 :𝑥∼𝑢 (1

𝑑𝑢 (𝑑𝑢+1)𝑑𝑥) =
E𝑥 :𝑥∼𝑢 (1

𝑑𝑥
)

𝑑𝑢+1 . Similarly, for those edges

which are incident to 𝑣 , the differences are
E𝑦:𝑦∼𝑣 (1

𝑑𝑦
)

𝑑𝑣+1 . Therefore,

E′(1

𝑑𝑖𝑑 𝑗
) =

|𝐸 | E(1

𝑑𝑖𝑑𝑗
)+ 1

(𝑑𝑢+1) (𝑑𝑣+1) −(
E𝑥 :𝑥∼𝑢 (1

𝑑𝑥
)

𝑑𝑢+1 +
E𝑦:𝑦∼𝑣 (1

𝑑𝑦
)

𝑑𝑣+1)
|𝐸′ | . By sim-

plifying the algebra and using𝑚′
2
= E′(𝑑𝑖) E′(1

𝑑𝑖𝑑 𝑗
), we get𝑚′

2
−

𝑚2 =
2

(𝑑𝑢+1) (𝑑𝑣+1) · (1 − E𝑥 :𝑥∼𝑢 (
𝑑𝑣+1
𝑑𝑥
) − E𝑦:𝑦∼𝑣 (𝑑𝑢+1𝑑𝑦

)). □

Obviously, if one adds a noise edge connecting two nodes 𝑢 and

𝑣 which are in the same subset of the current minimum cut, its

conductance (𝜙 (𝑆) = | (𝑥,𝑦) ∈𝐸,𝑥 ∈𝑆,𝑦∉𝑆 |
𝑚𝑖𝑛 (𝑣𝑜𝑙 (𝑆),𝑣𝑜𝑙 (𝑉 \𝑆))) decreases, making the

Cheeger constant of𝐺 ′:ℎ(𝐺 ′) ≤ ℎ(𝐺). However, from Theorem 5.1,

when 1 − E𝑥 :𝑥∼𝑢 (𝑑𝑣+1𝑑𝑥
) − E𝑦:𝑦∼𝑣 (𝑑𝑢+1𝑑𝑦

) < 0,𝑚2 decreases. Notice

that the term E𝑥 :𝑥∼𝑢 (𝑑𝑣+1𝑑𝑥
) is greater than 1 if the degree of node

𝑣 is generally larger than that of the neighbors of 𝑢. As a special

case satisfying the condition, connecting two high degree nodes

will decrease𝑚2. As we only look into undirected graphs without

self-loops, it is easy to see that the first spectral moment𝑚1 is 0.

The decrease of𝑚2 indicates 𝜇𝑖 ’s going towards zero. As a result,

𝜇2 will more likely decrease while 𝜆2 = 1 − 𝜇2 will increase, which
makes the bounds of the Cheeger constant in Equation 2 (𝜆2 and√
2𝜆2) greater, which is the opposite to the decrease from ℎ(𝐺) to

ℎ(𝐺 ′). This observation indicates that two disconnected high degree
nodes are more likely to be in different subsets of the minimum cut.

Therefore, connecting high degree nodes increases the conduc-

tance of the currentminimum cut, but decreases conductance of cuts

which assign the high degree nodes into the same subset. Hence,

our noise-enhanced method increases the chance of re-partitioning

a graph by assigning these high degree nodes into the same subset

in terms of minimum normalized cut. Next, we show if this happens,

i.e., one high degree node moving to the community of the other, all

objective functions in this study improve under some constraints.

5.2 Objective Function Analysis
To simplify, consider graph 𝐺 with communities 𝑆1 and 𝑆2. Denote

disconnected high degrees node 𝑣𝑖 in 𝑆1 with degree 𝑑𝑖 and 𝑣 𝑗
in 𝑆2 with degree 𝑑 𝑗 . Assume 𝑑𝑖 = 𝑑𝑖,𝑖𝑛 + 𝑑𝑖,𝑜𝑢𝑡 (similarly, 𝑑 𝑗 =

𝑑 𝑗,𝑖𝑛 + 𝑑 𝑗,𝑜𝑢𝑡), where 𝑑𝑖,𝑖𝑛 (𝑑 𝑗,𝑖𝑛) is the number of edges between

𝑣𝑖 (𝑣 𝑗) and nodes in 𝑆1 (𝑆2), and 𝑑𝑖,𝑜𝑢𝑡 (𝑑 𝑗,𝑜𝑢𝑡) is the number of

edges between 𝑣𝑖 (𝑣 𝑗) and nodes in 𝑆2 (𝑆1). Let 𝑚𝑆2 denotes the

number of edges in 𝑆2, and𝑚𝑆1 the number of edges in 𝑆1. We use

prime symbol (′) to denote the updated objective function value,

e.g., 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 ′. We assume that the high degree node that moves

to the community of the other is the one that has comparatively less

within-community connections than cross-community connections,

e.g., 𝑣𝑖 moves to 𝑆2 when 𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 . We show that all objective

functions can be improved under this condition.

Theorem 5.2 (Modularity Change). If 𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 , moving 𝑣𝑖
from 𝑆1 to 𝑆2 increases modularity.

Proof. Modularity [30] measures the density of edges inside

communities compared to edges between communities, and can be

obtained by
1

2𝑚

∑
𝑖 𝑗 [𝐴𝑖 𝑗 −

𝑑𝑖𝑑 𝑗

2𝑚]𝛿 (𝑐𝑖 , 𝑐 𝑗), where 𝐴 is the adjacency

matrix of graph 𝐺 , 𝑑𝑖 and 𝑑 𝑗 are degrees of nodes 𝑖 and 𝑗 ,𝑚 is the

number of edges in the graph, and 𝛿 (𝑐𝑖 , 𝑐 𝑗) = 1 if both vertices 𝑖

and 𝑗 belong to the same community; otherwise, it is 0. If 𝑣𝑖 moves

to 𝑆2, the modularity of each community changes as follows: (1) 𝑆2:

the modularity of 𝑣𝑖 ’s neighbors in 𝑆2 will increase from zero to a

positive value 1− 𝑑𝑖𝑑 𝑗

2𝑚 as the delta function now becomes 𝛿 (𝑐𝑖 , 𝑐 𝑗) =
1 for all such neighbors 𝑗 . On the other hand, the modularity of

nodes that are not connected to 𝑣𝑖 changes from zero to negative

values −𝑑𝑖𝑑 𝑗

2𝑚 . When 𝑑𝑖,𝑜𝑢𝑡 > 𝑚𝑆2 , the overall modularity of nodes

in 𝑆2 will be increased. (2) 𝑆1: the modularity of nodes which are

connected to 𝑣𝑖 will be decreased (positive values are changed to

zero), but modularity of nodes that were not connected to 𝑣𝑖 are

increased (negative values are changed to zero). When 𝑑𝑖,𝑖𝑛 < 𝑚𝑆1 ,

the modularity of nodes in 𝑆1 will be increased. Since adding 𝑣𝑖 to

𝑆2 only affects the modularity of 𝑆1 and 𝑆2, and they are increased,

the overall modularity of G will be also increased. □

Theorem 5.3 (Edge cut Change). If 𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 , moving 𝑣𝑖 from
𝑆1 to 𝑆2 decreases edge cut.

Proof. Edge cut, 𝑐𝑆 , is the number of crossing edges between

community 𝑆 and other nodes in 𝐺 [19]. As we only consider 𝑆1
and 𝑆2, 𝑐𝑆1 = 𝑐𝑆2 , which we simplify as 𝑐𝑆 . If we move 𝑣𝑖 to 𝑆2,

𝑑𝑖,𝑜𝑢𝑡 edges will be counted as edges in 𝑆2, and 𝑑𝑖,𝑖𝑛 edges will be

considered as new crossing edges between 𝑆1 and 𝑆2. So, the new

edge cut values are 𝑐 ′
𝑆1

= 𝑐 ′
𝑆2

= 𝑐𝑆−𝑑𝑖,𝑜𝑢𝑡 +𝑑𝑖,𝑖𝑛 . When𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 ,

edge cut is decreased. □

Theorem 5.4 (Conductance Change). If 𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 , moving 𝑣𝑖
from 𝑆1 to 𝑆2 decreases conductance.

Proof. Conductance for community 𝑆 can be calculated as:

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒𝑆 =
𝑐𝑠

2𝑚𝑠+𝑐𝑠 [14, 41]. If we move 𝑣𝑖 to 𝑆2, 𝑑𝑖,𝑜𝑢𝑡 edges

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

275

1 2 3 4 5 6 7 8 9 10 11
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Noise Proportion (𝑒%)

M
od

ul
ar
it
y

Frequency Noise

noiseless modularity
𝑝= 40%
𝑝= 80%
𝑝= 100%

Figure 3: Modularity of noise-enhanced Leading EigenVec-
tor on Bio-Dmela dataset when using frequency noise and
with candidates size 𝑝 ∈ {40%, 80%, 100%}.

will be counted as edges in 𝑆2, so𝑚
′
𝑆2

= 𝑚𝑆2 + 𝑑𝑖,𝑜𝑢𝑡 , and𝑚′𝑆1 =

𝑚𝑆1 − 𝑑𝑖,𝑖𝑛 . So, 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 ′𝑆2 =
𝑐′
𝑆
2

2𝑚′
𝑆
2

+𝑐′
𝑆
2

=
𝑐𝑆−𝑑𝑖,𝑜𝑢𝑡+𝑑𝑖,𝑖𝑛

2𝑚𝑆
2
+𝑐𝑆+𝑑𝑖,𝑜𝑢𝑡+𝑑𝑖,𝑖𝑛 and

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 ′
𝑆1

=
𝑐′
𝑆
1

2𝑚′
𝑆
1

+𝑐′
𝑆
1

=
𝑐𝑆−𝑑𝑖,𝑜𝑢𝑡+𝑑𝑖,𝑖𝑛

2𝑚𝑆
1
+𝑐𝑆+𝑑𝑖,𝑜𝑢𝑡−𝑑𝑖,𝑖𝑛 .When𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 ,

conductances of 𝑆1 and 𝑆2 will decrease. □

Theorem 5.5 (Normalized Cut Change). If 𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 , moving
𝑣𝑖 from 𝑆1 to 𝑆2 decreases cut size.

Proof. Normalized cut (Ncut) for community 𝑆 can be calculated

as 𝑁𝑐𝑢𝑡𝑆 =
𝑐𝑠

2𝑚𝑠+𝑐𝑠 +
𝑐𝑠

2(𝑚−𝑚𝑠)+𝑐𝑠 [41]. The first term is basically

conductance, and conductance is decreased based on Theorem 5.4.

So, 𝑁𝑐𝑢𝑡 ′
𝑆2

=
𝑐′
𝑆
2

2𝑚′
𝑆
2

+𝑐′
𝑆
2

+
𝑐′
𝑆
2

2(𝑚−𝑚′
𝑆
2

)+𝑐′
𝑆
2

= 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 ′
𝑆2
+

𝑐𝑆
2
−𝑑𝑖,𝑜𝑢𝑡+𝑑𝑖,𝑖𝑛

2(𝑚−𝑚𝑆
2
)+𝑐𝑆

2
−3𝑑𝑖,𝑜𝑢𝑡+𝑑𝑖,𝑖𝑛 , and 𝑁𝑐𝑢𝑡

′
𝑆1

=
𝑐′
𝑆
1

2𝑚′
𝑆
1

+𝑐′
𝑆
1

+
𝑐′
𝑆
1

2(𝑚−𝑚′
𝑆
1

)+𝑐′
𝑆
1

= 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 ′
𝑆1
+ 𝑐𝑆

1
−𝑑𝑖,𝑜𝑢𝑡+𝑑𝑖,𝑖𝑛

2(𝑚−𝑚𝑆
1
)+𝑐𝑆

1
−𝑑𝑖,𝑜𝑢𝑡+3𝑑𝑖,𝑖𝑛 . Hence, when

𝑘𝑑𝑖,𝑜𝑢𝑡 < 𝑑𝑖,𝑖𝑛 < 𝑑𝑖,𝑜𝑢𝑡 and 1/3 ≤ 𝑘 < 1, Ncut for 𝑆1 decreases. □

6 EXPERIMENTAL ANALYSIS
We evaluate the impact of adding noise on communities detected

in real-world and synthetic networks.

6.1 Noise-enhanced Community Detection in
Real-World Networks.

We start with an example. Figure 3 shows the modularity of noise-

enhanced Leading EigenVector method on Bio-Dmela dataset using

Frequencymethod for various candidate sizes, 𝑝 ∈ {40%, 80%, 100%},
and noise proportions 𝑒 . For stability, for each 𝑒 , we run the ex-

periments 10 times and compute the average modularity value.

Error bars denote one standard deviation. The dashed horizontal

red line shows the original modularity obtained in the noiseless

Bio-Dmlea. As shown, most obtained modularity values are above

the original modularity in the noiseless graph, implying that better

communities are found with respect to modularity by adding noise.

Figure 3 demonstrates the feasibility of noise-enhanced commu-

nity detection. Hence, we further design experiments to system-

atically assess the impact of noise on all graphs. For each graph

and each candidate size 𝑝 , we use noise methods to add different

proportions of noise 𝑒 and measure our evaluation metrics (EFS and
ROI) for all objective functions and community detection methods.

For each 𝑒 , we run the experiments 10 times to assess stability of

the results. As 𝑝 varies from 10% to 100% with 10% increments and

𝑒 varies from 1% to 10% with 1% increments, for each 𝑝 , we perform

100 experiments, and for all 𝑝 , we perform 1, 000 experiments. For

each dataset and objective function, these results with respect to

both evaluation metrics (ROI and EFS) can be summarized using 6

plots as shown as an example in Figure 4. The figure shows the effect

of all three proposed noise methods on conductance of communities

detected in HepPH. As shown in the Figure, EFS is on average 2 for

Louvain, FastGreedy, and Leading Eigenvector community detec-

tion methods, so on average, one only needs to add noise twice to

improve detected communities. ROI for conductance is also shown

in Figure 4. As all these noised-enhanced methods can improve

conductance (negative ROI value), for clarity, we show the absolute

values of ROI in the figure. We observe that the conductance of

communities detected by Leading Eigenvector is much higher than

that of those detected by other methods. Overall, our experiments

lead to 13×3×4 = 156 figures for all datasets, community detection

methods, noise methods, and objective functions.

For space reasons, we summarize our results in Table 3, which

provides the average EFS and ROI of noise-enhanced community

detection methods on all real-world networks. For each network,

there are four rows, one for each objective function. For a given

data set, noise method, and community detection method, we pro-

vide both EFS and ROI. Positive ROI values for modularity indicate

improvements (better communities) and negative ROI values for

conductance, edge cut, and normalized cut indicate improvements.

Gray cells indicate that the specific community detection method

did not improve with the specific noise method, and pink cells indi-

cate that the community detection method was unable to identify

communities (often due to computational complexity). We summa-

rize the findings in Table 3 as follows:

• Noise-enhanced community detection obtains an average EFS =

43 and ROI = 10.5 (absolute ROI values are considered for cal-

culating the averages) over all networks, community detection

methods, noise methods, and objective functions, indicating that

noise often improves detected communities;

• Weighted Noise is the best noise method for improving commu-

nities in biological networks, social networks, and collaboration

networks, and RandomNoise is the best choice for road networks;

• Louvain methods improves the most by adding noise compared

to other community detection methods;

• While all community detection method in general improve, each

method improves best with a specific type of noise: (1) Lou-

vain improves more with Weighted Noise and Frequency Noise,

where for Weighted: (EFS = 21, ROI = 3.45), and for Frequency:
(EFS = 29, ROI = 5.3). These numbers are the average [absolute]

values for modularity, conductance, edge cut, and normalized

cut; (2) Leading EigenVector improves more with Random Noise

and Weighted Noise, where for Random: (EFS = 25, ROI = 27.2),

and for Weighted: (EFS = 37, ROI = 31.4); (3) Fastgreedy im-

proves more with Weighted Noise and Frequency Noise, where

for Weighted: (EFS = 29, ROI = 5.05), and for Frequency: (EFS =

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

276

0 20 40 60 80 100

0

20

40

60

80

100

candidate size (𝑝)

Expected
First
Success
(EFSconductance)

Random

Louvain Leading EigenVector FastGreedy WalkTrap

0 20 40 60 80 100

0

5

10

15

20

candidate size (𝑝)

Weighted

0 20 40 60 80 100

0

2

4

6

8

10

candidate size (𝑝)

Frequency

0 20 40 60 80 100

0

20

40

60

80

candidate size (𝑝)

Relative
Objective
Improvement
(ROIConductance)

Random

0 20 40 60 80 100

0

10

20

30

candidate size (𝑝)

Weighted

0 20 40 60 80 100

0

10

20

30

candidate size (𝑝)

Frequency

Figure 4: Effect of all three proposed noise methods on the conductance of communities detected in HepPH. The first and the
second row show EFS and ROI for conductance. For HepPH, EFS=2 on average for Louvain, FastGreedy, and Leading Eigenvector
and ROI of communities detected by Leading Eigenvector is much higher than that of those detected by other methods.

40, ROI = 6.5); and (4) WalkTrap improves best with Random

Noise, where for Random: (EFS = 40, ROI = 5.05); and

• Adding noise often cannot help detect better communities in road

networks. This happens as there are not as many high degree

nodes in road networks as there are in other types of networks,

where the proposed noise methods rely on high degree nodes.

Based on results obtained in Section 5.1, we also added a con-

straint when selecting candidates where we enforced the degree of

each node among candidates to be higher than the average degree

of its neighbors. Then we sort nodes in candidates based on their de-

grees and add noise edges by connecting pairs of candidates. Table

4 shows the average EFS and ROI of adding this new constraint to

our noise enhanced community detection methods on 4 real-world

datasets (for each category in Table 1, one dataset is chosen). As the

results are similar to the results in Table 3 and connecting nodes

with high degrees is easier to implement, the results following are

based on connecting high degree nodes.

Impact of Limited Noise. We note that our experiments show

that even when we add a few edges to large networks, one can

detect better communities. As an example, EFS and ROI for modu-

larity after adding 1, 000 edges to Facebook-Company network is

shown in Table 5. The Table shows that if we use any of Louvain,

FastGreedy, or Leading EigenVector methods where noise is on

average added four times to this dataset (EFS=4), we can detect

better communities: ROI value will be at least %0.23.

6.2 Noise-enhanced Community Detection in
Synthetic networks.

We start with an example. Figures 5 and 6 provide the EFS of mod-

ularity and edge cut after applying Louvain on synthetic networks

with 𝑛 = 1, 000 nodes and 𝑛 = 10, 000 nodes, respectively. The

points with EFS> 100 are shown at the top of the charts. As Figure

5 shows, when 𝜇 = 0.5 (a balance between number of edges inside

communities and outside of them), Louvain is able to improve mod-

ularity with low values of EFS, while when 𝜇 = 0.1, as 90% of edges

are inside communities and our approach is based on adding noise

edges, Louvain is less likely to improve modularity. This figure

shows when graphs become denser (increasing 𝐾), EFS for edge cut
increases. Figure 6 shows when graphs become larger (𝑛 = 10, 000)

and denser (increasing 𝐾), EFS for modularity decreases on aver-

age. All chart in both Figures 5 and 6 show that noise enhanced

Louvain is able to highly improve modularity and edge cut EFS
for synthetic networks with 𝜇 = 0.5, 𝛽 = 1, and 𝛾 = 2. Table 6

provides the average of EFS and ROI for synthetic networks. The
first and second four rows show statistics on objective functions

for 𝑛 = 1, 000 and 𝑛 = 10, 000, respectively. Each element in Table 6

shows the average EFS or ROI for 16 synthetic networks with the

same number of nodes (𝑁) and different 𝜇, 𝛽 , and 𝛾 values. As Table

6 shows noise-enhanced community detection is able to improve

all objective functions in terms of both EFS and ROI. WalkTrap

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

277

Table 3: Expected First Success (EFS) and Relative Objective Improvement (ROI) of noise-enhanced community detection meth-
ods on real-world networks. These numbers show that: (1) Louvain improves more withWeighted Noise and Frequency Noise,
(2) Leading EigenVector improvesmorewith RandomNoise andWeighted Noise, (3) FastGreedy improvesmorewithWeighted
Noise and Frequency Noise, and (4) WalkTrap improves best with Random Noise.

,

Network
Dataset

Objective
Function

Random Noise Weighted Noise Frequency Noise
Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap

EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI

Bio-Dmela

Modularity 8 0.7 2 7.4 1000 0.01 50 1 3 0.76 2 6.7 500 0.04 27 1.1 5 0.9 2 6.3 1000 0.01 12 1.3

Conductance 2 -4.5 11 -12 2 -3.1 26 -4.6 2 -5.3 16 -12.9 2 -3.4 23 -3.7 2 -6.8 20 -9.8 2 -4 17 -4.9

Edge Cut 5 -6.4 2 -58.2 2 -16.5 2 -21.2 3 -7 2 -56.3 2 -21.7 2 -23.6 2 -9.4 3 -5.8 2 -26.8 2 -25

NCut 4 -4.1 10 -6.6 8 -3.1 32 -5.2 2 -5 14 -10 2 -3.5 28 -4.7 2 -6.5 70 -1.08 2 -4.5 17 -4.4

Bio-Grid-Yeast

Modularity 13 0.22 5 0.68 37 1.1 9 0.9 5 0.22 8 0.8 50 0.67 12 0.92 4 0.25 4 1.15 37 0.76 15 1

Conductance 2 -10.5 23 -4.4 47 -6.9 13 -0.34 2 -11 28 -2.8 45 -6.8 4 -0.07 2 -10.9 17 -2.8 44 -7 3 -0.09

Edge Cut 4 -5.3 3 -5.6 2 -26.3 2 -12 3 -5.7 4 -5.9 2 -23.9 2 -12 3 -5.9 2 -5.3 2 -22.8 2 -11

NCut 3 -9.3 50 -9 55 -2.8 28 -0.32 2 -9.6 51 -5 52 -6 5 -0.07 2 -9.4 200 -10 55 -3.6 4 -0.09

CAGrqc

Modularity 12 0.024 42 0.18 20 0.29 40 0.012 9 0.24 10 0.16 7 0.02 8 0.25 26 0.11

Conductance 17 -4.2 27 -12 13 -7.3 20 -2.8 3 -4.01 3 -35 4 -6.7 65 -2.5 2 -4.6 3 -46 7 -5.8 500 -0.08

Edge Cut 66.6 -0.036 34 -10.7 15 -1.6 14 -1.3 27 -0.24 110 -3.2 18 -2 12 -1.1 46 -0.34 25 -14.3 10 -2.3 25 -0.56

NCut 37 -2.7 4 -35 24 -7.2 25 -2.2 8 -4.3 6 -17.1 5 -6.7 10 -1.22 3 -4.5 4 -44 8 -6.4 333 -0.28

Ca-HepTh

Modularity 27 0.11 10 113 10 0.39 500 0.04 15 0.15 2 100 4 0.38 334 0.1 56 0.13 4 117 5 0.39 334 0.03

Conductance 11 -3.7 45 -17.7 4 -9.3 30 -3.4 7 -3.3 72 -35.1 2 -7.7 35 -3.5 15 -3.4 4 -12.7 2 -6.5 200 -1.4

Edge Cut 25 -0.28 125 -7.2 58 -0.8 3 -3.8 70 -0.35 250 -28 28 -1 2 -5 3 -3.4 64 -12 8 -1.4 2 -4.8

NCut 30 -2.5 40 -8.7 12 -10 28 -3.3 8 -3.2 110 -16.5 3 -8 60 -3.1 20 -3 6 -11.9 2 -6.6 500 -1.9

CA-HepPh

Modularity 4 0.45 70 0.48 7 0.96 16 1.15 2 0.5 250 0.19 3 1.2 50 0.55 2 0.64 51 0.25 3 0.95 100 0.04

Conductance 3 -12 42 -12 12 -16.1 6 -18 2 -7 5 -17 3 -5.2 7 -15.1 2 -7.7 4 -19 3 -4 5 -14

Edge Cut 70 -0.4 25 -1.2 50 -2.1 4 -9.6 30 -2.4 23 -5.6 4 -3.6 2 -13.9 11 -2.6 8 -6 2 -3.9 2 -13.9

NCut 3 -13 36 -13.9 4 -17.4 13 -20.3 3 -7.4 6 -15.9 3 -5.7 8 -14.9 2 -7.1 4 -20 3 -3.7 5 -14.1

Fb-Athletes

Modularity 2 0.82 2 27.6 2 2.3 5 0.54 2 0.9 2 17.1 2 1.4 4 0.55 2 90 2 12.4 2 1.1 5 0.58

Conductance 3 -3.1 47 -33 2 -5.7 22 -1.4 2 -3.2 21 -41 2 -5.3 15 -1.3 2 -3.7 42 -18 2 -3.8 16 -1.4

Edge Cut 7 -4.9 3 -52.1 334 -0.86 4 -11.6 3 -5.7 2 -43.5 154 -2.3 2 -14.4 2 -9.7 2 -42.9 112 -1.53 2 -12.6

NCut 4 -2.7 36 -31 3 -6.1 25 -1.5 3 -3.1 46 -58 2 -5.2 21 -1.5 2 -3.6 70 -20 2 -3.9 21 -1.1

Fb-Government

Modularity 15 0.02 28 0.85 2 2.7 4 0.43 10 0.02 40 0.81 2 2.6 8 0.34 9 0.02 41 107 2 2.6 9 0.3

Conductance 3 -2.7 4 -17.9 3 -12.2 13 -2.8 3 -2.7 2 -16.2 3 -14.2 500 -0.31 3 -2.7 2 -15.4 3 -11.5 1000 -0.02

Edge Cut 16 -2.7 5 -26.5 9 -16.3 2 -21.9 4 -2.6 15 -26.6 3 -16.5 2 -25.7 4 -2.8 11 -25.2 3 -12 2 -25.5

NCut 3 -2.8 5 -10.2 3 -11.2 12 -2.88 3 -25 2 -9.8 3 -10.6 200 -1.2 4 -2.5 2 -10.5 3 -11.1 1000 -0.11

Fb-Politician

Modularity 14 0.01 8 30.3 5 0.44 5 0.46 13 0.01 5 26.4 4 0.44 16 0.21 10 0.01 2 34.6 2 0.43 44 0.11

Conductance 4 -2.4 2 -16 14 -4.4 55 -0.46 2 -2.3 3 -15 10 -4.3 2 -2.7 5 -17 7 -3.1

Edge Cut 32 -1.2 20 -20.8 5 -15.2 5 -8 10 -1.5 20 -24 3 -16.6 2 -9.9 19 -1.5 5 -25 2 -13.1 2 -8.2

NCut 5 -2.6 4 -12.1 15 -4.1 58 -0.39 2 -2.4 5 -11.5 10 -4.4 2 -2.6 7 -13.3 9 -3.8

Fb-Company

Modularity 10 0.2 2 48.4 8 0.58 56 0.26 5 0.24 2 54.7 5 0.47 66 0.29 12 0.29 2 44.5 5 48 250 0.11

Conductance 9 -2 100 -0.48 7 -9.8 20 -3.5 3 -2.4 40 -100 6 -5.7 19 -3 5 -3.1 11 -100 5 -1.9 11 -2.7

Edge Cut 28 -4.1 3 -33 34 -2.2 2 -8.6 10 -4.3 2 -47 17 -3.9 2 -11 3 -12.4 2 -53 10 -3.1 2 -14.5

NCut 24 -1.7 70 -34 11 -9.7 19 -4 5 -2 29 -92 7 -6.1 25 -3.7 5 -2.9 9 -98 6 -24 11 -2.9

BlogCatalog

Modularity 63 0.07 2 0.06 2 0.88 2 6.8 45 0.08 2 0.09 2 0.98 2 7.3 40 0.08 2 0.08 2 0.96 2 7.7

Conductance 3 -6.2 2 -0.4 3 -2.5 3 -0.3 2 -6.5 3 -0.38 2 -2.9 3 -0.25 2 -6.6 2 -0.8 2 -3.2 3 -0.32

Edge Cut 30 -8.6 6 -0.03 15 -13.7 4 -18 3 -7.4 3 -0.05 29 -6.5 2 -19 3 -8.2 5 -0.04 49 -6 2 -21

NCut 3 -3.1 4 -0.04 22 -1.3 8 -0.28 2 -3 3 -0.05 2 -1.8 3 -0.25 2 -2.1 4 -0.05 2 -1.9 2.6 -0.27

California-roads

Modularity 3 120 3 129 3 36.2

Conductance 26 -100 47 -100 1000 -1

Edge Cut 37 -70 2 -9.4 44 -85 2 -9.6 334 -3 2 -13.3

NCut 49 -100 40 -100 334 -3

Euro-roads

Modularity 500 0.002 32 0.23 66 0.24 155 0.015 16 0.25 84 0.11 13.2 0.17 9 0.27 56 0.16

Conductance 13 -7.6 22 -4.2 31 -2.1 32 -4.1 40 -12.2 15 -4.4 41 -2.6 20 -3.6 33 -9.6 10 -4.2 62 -3.2

Edge Cut 33 -2.4 58 -72 144 -0.81 40 -1.6 70 -0.9 77 -50 91 -1.17 28 -1.8 100 -1.4 250 -20.6 200 -0.29 10 -2.6

NCut 18 -6.1 10 -33 28 -5.5 50 -1.7 84 -1.19 250 -13.3 22 -4.7 42 -2.5 7 -5.4 24 -22.2 9 -4.7 46 -2.8

Minnesota-roads

Modularity 100 0.004 29 30224 63 0.38 144 0.08 2 102000 72 0.09 100 0.006 2 95000 91 0.04

Conductance 156 -0.18 55 -2.8 500 -0.96 60 -1.9 50 -2.4 500 -1.25 100 -0.04 55 -33 125 -1.7

Edge Cut 65 -0.9 52 -1.4 2 -15.6 50 -1.9 2 -16.7 500 -0.28 52 -2.3 3 -7.3

NCut 65 -2.1 65 -1.2 58 -1.2 200 -0.79 54 -1.9 200 -1.16

often does not highly improve when adding noise to large graphs,

especially for modularity objective function.

6.3 Ground-truth Communities
While community detection methods based on modularity opti-

mization have shown to be effective in identifying communities in

real-world and synthetic networks, modularity optimization may

fail to detect communities that are smaller than a scale due to its

Resolution Limit [9]. Hence, we also use Normalized Mutual infor-
mation (NMI) as the objective function to compare the communities

detected by our noise-enhanced framework and ground-truth com-

munities. We use two datasets with ground truth communities: (1)

email-Eu-core [18] with 1K nodes and 13K edges and (2) DBLP [21]

with 13K nodes and 56K edges. Table 7 provides the EFS and ROI for
the NMI. The results show improvements in NMI for the proposed

noise enhanced community detection framework compared to the

existing community detection methods. In particular, all proposed

noise methods can help detect better communities, where Random

Noise yields EFS=7, and ROI=2.42, Weighted Noise results in EFS=7,
and ROI=2.9, and Frequency Noise obtains EFS=16, and ROI=4.8.

7 CONCLUSION
We introduced a framework to enhance community detection by

adding noise to networks. The approach adds a preprocessing step

to the current community detection methods as a noise injection

step. For noise injection, three methods were proposed that ran-

domly add noise edges to the network, focusing on high degree

nodes. Our theoretical and extensive empirical results show that

this approach leads to finding better communities using current

community detection methods not only by detecting communi-

ties that are better in terms of an objective functions but also by

detecting communities that are more similar to the ground-truth.

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

278

Table 4: Expected First Success (EFS) and Relative Objective Improvement (ROI) of noise-enhanced community detection meth-
ods on 4 real-world networks after adding the constraint that the degree of each node in candidates is higher than the average
degree of its neighbors.

Network
Dataset

Objective
Function

Random Noise Weighted Noise Frequency Noise
Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap

EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI

Bio-Dmela

Modularity 4 0.68 2 7.3 8 1.4 4 0.99 2 6.7 251 0.01 210 1.5 6 0.91 2 6.4 10 1.3

Conductance 2 -5.4 14 -9.9 2 -3.6 17 -3.4 2 -6.8 16 -8.5 2 -3.7 18 -6.09 2 -3.3 18 -7.5 3 -2.8 9 -3.7

Edge Cut 2 -9.5 2 -57.3 2 -28.1 2 -24 2 -10.5 2 -60.4 2 -30.5 2 -26 3 -5.8 2 -56.2 2 -28.6 2 -23.2

NCut 2 -5.8 8 -6.4 2 -3.8 10 -4.5 2 -6.8 11 -8.3 2 -4.25 13 -4.7 2 -3.8 66 -1 3 -2.9 8 -4.2

CAGrqc

Modularity 36 0.08 30 0.25 13 0.16 13 0.01 18 0.25 39 0.13 8 0.02 16 0.28 501 0.05

Conductance 2 -4.3 2 -43.3 7 -4.9 6 -2 2 -4.1 3 -43.4 9 -6.3 20 -0.72 3 -3.1 2 -51.7 11 -6.4

Edge Cut 23 -0.21 15 -25 11 -1.5 3 -2.1 10 -0.24 21 -2.1 9 -1.8 4 -1.4 17 -0.12 17 -2.6 24 -1.35 12 -0.84

NCut 2 -3.5 3 -32 9 -5.9 6 -1.8 2 -4.2 6 -15.6 9 -5.7 26 -0.97 4 -2.8 4 -39.3 12 -6.3

Fb-Athletes

Modularity 2 0.88 3 12.1 2 1.12 6 0.51 2 0.85 3 13.8 2 1.2 6 0.55 2 0.72 3 12.8 2 0.97 7 0.67

Conductance 3 -3.03 6 -26.4 2 -4.4 18 -1.5 2 -3.5 16 -15.3 2 -4.3 15 -1.09 3 -3.05 42 -0.69 3 -3.6 14 -1.2

Edge Cut 3 -6.7 2 -47.6 501 -0.06 2 -14.2 2 -7.7 2 -49.1 72 -0.86 2 -14.4 4 -6.4 2 -40.7 2 -5

NCut 3 -2.9 38 -25.1 2 -4.6 32 -1.6 2 -3.3 40 -53.9 2 -3.6 17 -1.4 3 -3.02 73 -24.6 3 -3.4 12 -1.2

Euro-roads

Modularity 126 0.02 8 0.22 42 0.23 72 0.03 7 0.34 51 0.27 100 0.02 9 0.27 32 0.23

Conductance 11 -49.7 6 -5.8 22 -2.4 40 -12.2 5 -5.7 63 -1.16 12 -25.6 11 -4.8 20 -2.75

Edge Cut 32 -1.23 46 -95 100 -1.01 7 -2.4 28 -1.08 27 -67.2 167 -0.59 5 -2.1 72 -0.8 167 -60 152 -0.27 9 -2.3

NCut 72 -0.09 11 -37.6 7 -4.2 20 -3.1 167 -3.1 11 -46.5 11 -4.6 30 -1.1 15 -29.1 10 -5.1 16 -2.7

Table 5: Expected First Success (EFS) and Relative Objective Improvement (ROI) of noise-enhanced community detection meth-
ods for modularity when adding 1, 000 noise edges to Fb-Company. Applying any of Louvain, FastGreedy, or Leading Eigen-
Vector after adding 1, 000 noise edges to Fb-Company leads to detecting better communities: EFS=4, and ROI=%0.23.

Network
Random Noise Weighted Noise Frequency Noise

Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap
EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI

Fb-Company 5 0.23 2 22.9 3 0.39 3 0.25 2 57 3 0.5 4 0.31 2 61 2 0.45

Table 6: Expected First Success (EFS) and Relative Objective Improvement (ROI) of noise-enhanced community detection meth-
ods on synthetic networks. Each number shows the average EFS or ROI for 16 synthetic networks with the same number of
nodes (𝑛) and different 𝜇, 𝛽 , and 𝛾 values.

Network
Size

Objective
Function

Random Noise Weighted Noise Frequency Noise
Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap

EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI

𝑛 = 1, 000

Modularity 11 0.1 4 4.04 9 0.58 7 0.138 11 0.1 4 4.05 8 0.61 9 0.12 12 0.1 4 4.19 7 0.64 13 0.11

Conductance 4 -0.49 3 -8.77 4 -1.57 5 -0.6 3 -0.52 4 -8.32 4 -1.65 7 -0.39 3 -0.58 3 -9.2 3 -1.76 8 -0.3

Edge Cut 7 -1.78 4 -16.82 4 -5.15 5 -1.94 7 -1.83 4 -15.9 4 -5.51 4 -2.43 8 -1.69 3 -18.2 3 -5.95 4 -2.81

NCut 4 -0.36 3 -5.09 5 -1.22 5 -0.56 4 -0.37 3 -6.97 4 -1.31 7 -0.39 3 -0.39 3 -5.58 4 -1.39 9 -0.31

𝑛 = 10, 000

Modularity 6 0.095 4 6.53 8 0.7 100 0.003 5 0.18 4 8.85 6 0.76 272 0.0006 4 0.25 4 9.3 5 0.76 3200 0.0002

Conductance 3 -0.13 3 -11.95 5 -0.95 20 -0.16 3 -0.13 3 -14.83 4 -1.18 65 -0.1 2 -0.23 2 -16.98 3 -1.39 889 -0.06

Edge Cut 11 -1.32 3 -33.54 5 -4.45 6 -2.75 5 -2.02 3 -34.5 4 -5.05 6 -3.29 5 -1.88 2 -38.69 3 -5.68 5 -4.24

NCut 5 -0.06 3 -6.3 7 -0.79 20 -0.15 4 -0.07 3 -7.5 4 -0.93 72 -0.1 2 -0.14 3 -9.41 3 -1.2 1143 -0.04

Table 7: Expected First Success (EFS) and Relative Objective Improvement (ROI) of noise enhanced community detection meth-
ods for NMI improvement based on ground truth communities. All noise methods can improve NMI, where Random Noise
obtains EFS=7, and ROI=2.42, Weighted Noise yields EFS=7, and ROI=2.9, and Frequency Noise results in EFS=16, and ROI=4.8.

Network
Random Noise Weighted Noise Frequency Noise

Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap Louvain EigenVector FastGreedy WalkTrap
EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI EFS ROI

email-Eu-core 2 2.1 25 0.73 6 0.69 5 3 2 2.4 31 0.76 4 0.83 4 3.01 2 2.3 100 0.06 4 0.92 5 2.4

DBLP 2 4.6 5 2.9 8 2.08 2 3.3 2 6.3 3 3.4 6 2.64 2 4.07 2 13.9 2 12.1 6 2.5 2 4.3

REFERENCES
[1] Alex Arenas, Albert Díaz-Guilera, and Conrad J Pérez-Vicente. 2006. Synchro-

nization reveals topological scales in complex networks. Phys. Rev. letters 96, 11
(2006).

[2] Kartik Audhkhasi, Osonde Osoba, and Bart Kosko. 2016. Noise-enhanced convo-

lutional neural networks. Neural Networks 78 (2016), 15–23.
[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. JSTAT 2008, 10

(2008), P10008.

[4] Jeff Cheeger. 1969. A lower bound for the smallest eigenvalue of the Laplacian. In

Proceedings of the Princeton conference in honor of Professor S. Bochner. 195–199.

[5] Hao Chen, Lav R Varshney, and Pramod K Varshney. 2014. Noise-enhanced

information systems. PIEEE (2014).

[6] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding commu-

nity structure in very large networks. Phys. Rev. E 70, 6 (2004), 066111.

[7] Jordi Duch and Alex Arenas. 2005. Community detection in complex networks

using extremal optimization. Phys. Rev. E 72 (Aug 2005), 027104. Issue 2.

[8] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[9] Santo Fortunato and Marc Barthelemy. 2007. Resolution limit in community

detection. Proceedings of the national academy of sciences 104, 1 (2007), 36–41.

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

279

5 10 15 20

0

20

40

60

80

100

EF
S M

o
d
u
l
a
r
i
t
y

Random

5 10 15 20

0

20

40

60

80

100

Weighted

5 10 15 20

0

20

40

60

80

100

Frequency

5 10 15 20

0

20

40

60

80

100

degree (𝐾)

EF
S E

d
g
e
C
u
t

5 10 15 20

0

20

40

60

80

100

degree (𝐾)

𝜇=0.1,𝛽=1, 𝛾=2 𝜇=0.5,𝛽=1, 𝛾=2 𝜇=0.1,𝛽=2, 𝛾=3 𝜇=0.5,𝛽=2, 𝛾=3

5 10 15 20

0

20

40

60

80

100

degree (𝐾)

Figure 5: Expected First Success (EFS) ofmodularity and edge
cut after applying Louvain on noisy communities of syn-
thetic networks with 𝑛 = 1, 000. When 𝜇 = 0.5, Louvain is
able to improve modularity with low values of EFS, while
when 𝜇 = 0.1, Louvain is less likely to improve modularity.
By increasing 𝐾 , EFS for edge cut also increases.

15 20 25 30

0

20

40

60

80

100

EF
S M

o
d
u
l
a
r
i
t
y

Random

15 20 25 30

0

20

40

60

80

100

Weighted

15 20 25 30

0

20

40

60

80

100

Frequency

15 20 25 30

0

20

40

60

80

100

degree (𝐾)

EF
S E

d
g
e
C
u
t

15 20 25 30

0

20

40

60

80

100

degree (𝐾)

15 20 25 30

0

20

40

60

80

100

degree (𝐾)

𝜇=0.1,𝛽=1, 𝛾=2 𝜇=0.5,𝛽=1, 𝛾=2 𝜇=0.1,𝛽=2, 𝛾=3 𝜇=0.5,𝛽=2, 𝛾=3

Figure 6: Expected First Success (EFS) ofmodularity and edge
cut after applying Louvain on noisy communities of syn-
thetic networks with 𝑛 = 10, 000. By increasing 𝑛 and 𝐾 , EFS
for modularity decreases on average.

[10] Luca Gammaitoni, Peter Hänggi, Peter Jung, and Fabio Marchesoni. 1998. Sto-

chastic resonance. Reviews of modern physics 70, 1 (1998), 223.
[11] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and

biological networks. PNAS 99, 12 (2002).
[12] Roger Guimerà, Marta Sales-Pardo, and Luís A. Nunes Amaral. 2004. Modularity

from fluctuations in random graphs and complex networks. Phys. Rev. E 70 (Aug

2004), 4. Issue 2.

[13] Shengmin Jin and Reza Zafarani. 2020. The Spectral Zoo of Networks: Embedding

and Visualizing Networks with Spectral Moments. In Proceedings of the KDD.

[14] Ravi Kannan, Santosh Vempala, and Adrian Vetta. 2004. On clusterings: Good,

bad and spectral. JACM 51, 3 (2004).

[15] Steven Kay. 2000. Can detectability be improved by adding noise? IEEE signal
processing letters 7, 1 (2000), 8–10.

[16] O. Krishna, R. K. Jha, A. K. Tiwari, and B. Soni. 2013. Noise induced segmentation

of noisy color image. In 2013 NCC. 1–5.
[17] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark

graphs for testing community detection algorithms. Phys. Rev. E 78, 4 (2008),

046110.

[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection.

[19] Jure Leskovec, Kevin J Lang, and Michael Mahoney. 2010. Empirical comparison

of algorithms for network community detection. In Proc. of WWW. 631–640.

[20] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. 2005. On trip planning queries in spatial databases. In SSTD. 273–290.
[21] Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. 2017. Estimat-

ing mixed memberships with sharp eigenvector deviations. arXiv preprint
arXiv:1709.00407 (2017).

[22] Mark D McDonnell and Derek Abbott. 2009. What is stochastic resonance?

Definitions, misconceptions, debates, and its relevance to biology. PLoS comp.
bio. 5, 5 (2009).

[23] Mark D McDonnell and Lawrence M Ward. 2011. The benefits of noise in neural

systems: bridging theory and experiment. Nature Reviews Neuroscience 12, 7
(2011), 415.

[24] Frank Moss, Lawrence MWard, andWalter G Sannita. 2004. Stochastic resonance

and sensory information processing: a tutorial and review of application. Clinical
neurophysiology 115, 2 (2004), 267–281.

[25] L. Nataraj, A. Sarkar, and B. S. Manjunath. 2009. Adding Gaussian noise to

“denoise” JPEG for detecting image resizing. In ICIP. 1493–1496.
[26] Lakshmanan Nataraj, Anindya Sarkar, and Bangalore S Manjunath. 2010. Im-

proving re-sampling detection by adding noise. InMedia Forensics and Security II,
Vol. 7541.

[27] Mark Newman. 2018. Networks. Oxford university press.

[28] Mark EJ Newman. 2004. Fast algorithm for detecting community structure in

networks. Phys. Rev. E 69, 6 (2004).

[29] Mark EJ Newman. 2006. Finding community structure in networks using the

eigenvectors of matrices. Phys. Rev. E 74, 3 (2006), 036104.

[30] Mark EJ Newman. 2006. Modularity and community structure in networks. PNAS
103, 23 (2006), 8577–8582.

[31] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community

structure in networks. Phys. Rev. E 69, 2 (2004), 026113.

[32] Osonde Osoba and Bart Kosko. 2013. Noise-enhanced clustering and competitive

learning algorithms. Neural Networks 37 (2013), 132–140.
[33] Osonde Osoba, Sanya Mitaim, and Bart Kosko. 2013. The noisy expectation–

maximization algorithm. Fluctuation and Noise Letters 12, 03 (2013), 1350012.
[34] Renbin Peng, Hao Chen, and Pramod K Varshney. 2009. Noise-enhanced detection

of micro-calcifications in digital mammograms. IEEE JSTSP 3, 1 (2009), 62–73.

[35] Pascal Pons and Matthieu Latapy. 2005. Computing communities in large net-

works using random walks. In ISCIS.
[36] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and

Domenico Parisi. 2004. Defining and identifying communities in networks. PNAS
101, 9 (2004).

[37] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear

time algorithm to detect community structures in large-scale networks. Phys.
Rev. E 76, 3 (2007).

[38] Erzsébet Ravasz, Anna Lisa Somera, Dale A Mongru, Zoltán N Oltvai, and A-L

Barabási. 2002. Hierarchical organization of modularity in metabolic networks.

science 297, 5586 (2002), 1551–1555.
[39] Jörg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community

detection. Phys. Rev. E 74, 1 (2006), 016110.

[40] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization.

[41] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.

Departmental Papers (CIS) (2000), 107.
[42] Enrico Simonotto, Massimo Riani, Charles Seife, Mark Roberts, Jennifer Twitty,

and Frank Moss. 1997. Visual Perception of Stochastic Resonance. Phys. Rev. Lett.
78 (Feb 1997), 0. Issue 6.

[43] Kit-Sang Tang, Kim-Fung Man, Sam Kwong, and Qun He. 1996. Genetic al-

gorithms and their applications. IEEE signal processing magazine 13, 6 (1996),
22–37.

[44] Ted C Wang and Nicolaos B Karayiannis. 1998. Detection of microcalcifications

in digital mammograms using wavelets. IEEE trans. on medical imaging 17, 4

(1998).

[45] R. Zafarani and H. Liu. 2009. Social Computing Data Repository. http://

socialcomputing.asu.edu

[46] Steeve Zozor and Pierre-Olivier Amblard. 2002. On the use of stochastic resonance

in sine detection. Signal Proc. 82, 3 (2002).

Session 8: Social Media Analysis HT ’20, July 13–15, 2020, Virtual Event, USA

280

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

	Abstract
	1 Introduction
	2 Literature Review
	3 Noise Injection Methods
	4 Experimental Setup
	5 Theoretical Analysis
	5.1 Spectral Analysis
	5.2 Objective Function Analysis

	6 Experimental Analysis
	6.1 Noise-enhanced Community Detection in Real-World Networks.
	6.2 Noise-enhanced Community Detection in Synthetic networks.
	6.3 Ground-truth Communities

	7 Conclusion
	References

