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Our social media experience is no longer limited to a single site. We use different social media sites for
different purposes and our information on each site is often partial. By collecting complementary infor-
mation for the same individual across sites, one can better profile users. These profiles can help improve
online services such as advertising or recommendation across sites. To combine complementary informa-
tion across sites, it is critical to understand how information for the same individual varies across sites. In
this study, we aim to understand how two fundamental properties of users vary across social media sites.
First, we study how user friendship behavior varies across sites. Our findings show how friend distribu-
tions for individuals change as they join new sites. Next, we analyze how user popularity changes across
sites as individuals join different sites. We evaluate our findings and demonstrate how our findings can
be employed to predict how popular users are likely to be on new sites they join.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Social media has become an integral part of our daily life. Its
popularity has become evident with around 6 billion photos
uploaded monthly to Facebook, the blogosphere doubling every
five months, 72h of video being uploaded every minute to
YouTube, and Twitter having more than 200 million active users
who tweet 500 million Tweets per day. According to a recent
Pew Internet and American Life survey [1], more than 73% of online
adults are on a social networking site. Clearly, our social media
experience is no longer limited to a single site.

Our daily social media experience constitutes posting, liking,
watching, listening, and the like on multiple sites such as
Facebook, Twitter, Pandora, and YouTube. The same survey reports
that a striking 42% of online users are now on multiple social media
sites. This clearly shows the need for techniques that combine user
information across sites. By combing the information that a user
has provided across sites, one can better understand and profile
the user, and in turn, improve online services such as recommen-
dations to the user. However, it is not clear whether user informa-
tion varies across sites. And if it does, how much does this
information vary across sites. The answers to these questions are
critical for a systematic user information fusion across sites. Our
goal in this paper is to tackle this question.
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As friends are the fundamental building blocks of social media
sites [2], we focus on how friends and friendship behavior varies
across sites. Friendship behavior and friends are naturally con-
nected to the concept of popularity. Often, an intuitive mechanism
to achieve popularity is to befriend others. Friends introduce a
more pleasant social media experience and having more friends
is perceived as a sign of popularity. For example, on social media,
some individuals befriend random individuals in order to increase
their popularity. Hence, we extend our study by analyzing both
friendship behavior and popularity variations across sites. We
show how friends are dispersed across sites and how this distribu-
tion shifts as users join more sites. We show how joining more
sites influences the number of friends individuals have across
them, as well as their popularity. Finally, we demonstrate how
the findings of this study can be used to predict the popularity of
users on new sites.

We first discuss the social media sites that users join. Next, we
analyze how friends are distributed across sites. Then, we study
how popularity varies across sites and detail our approach to pre-
dict user popularity across sites. Finally, we review related
research to this study and conclude this work with future research
directions.

2. Social media sites that users join

To understand user friendships and popularity across sites, one
needs to gather the list of sites that users have joined on social
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media. Social media sites are developed for different purposes;
therefore, to systematically study friendships and popularity, one
has to consider different types of sites. According to recent studies
[3,4], social media sites can be categorized into 7 general cate-
gories: (1) Blogs and Blogging Portals, (2) Media Sharing (Photo,
Audio, or Video), (3) Microblogging, (4) Social Bookmarking, (5)
Social Friendship networks, (6) Social News and Search, and (7)
Location-Based Networks. We select 20 sites that cover these cate-
gories and are of different popularity on social media to study user
friendships. The sites selected are BlogCatalog, BrightKite, Del.icio.us,
Digg, Flickr, iLike, IntenseDebate, Jaiku, Last.fm, LinkedIn, Mixx,
MySpace, MyBloglog, Pandora, Sphinn, StumbleUpon, Twitter, Yelp,
YouTube, and Vimeo. Next, we need to gather users that have joined
some of these 20 sites.

Unfortunately, information about sites that users joined is not
readily available. One can survey individuals and ask for the list
of sites they have joined. This approach can be expensive and the
data collected is often limited. Another method for identifying sites
users have joined is to find users manually across sites. Users often
provide personal information such as their real names, E-mail
addresses, location, gender, profile photos, and age on different
websites. This information can help find the same individual on
different sites. However, finding users manually on sites can be
challenging and time consuming. Automatic approaches are also
possible that can connect corresponding users across different sites
[5-11]. A more straightforward approach is to use websites where
users voluntarily list the sites they have joined. In particular, we
find social networking sites, blogging and blog advertisement por-
tals, and forums to be credible sources for collecting the sites users
have joined. For example, on social networking sites such as
Google+ or Facebook, users can list their IDs on other sites.
Similarly, on blogging portals and forums, users are often provided
with a feature that allows users to list their usernames in other
social media sites.

We utilize these sources for collecting sites users have joined.
Overall, we collect a set of 96,194 users, each having accounts on
some of the aforementioned 20 social media sites. As each user,
has self-reported the accounts, they are guaranteed to belong to
the same user. For each of the 20 sites, we develop a crawler that
extracts the number of friends each individual has on the site.
Hence, for each individual in our dataset, we have the number of
friends a user has across different sites.

3. How friendship behavior varies across sites

One naturally expects that as users join more sites, it becomes
more likely for them to find sites that contain more of their friends;
therefore, befriending more individuals. Our data confirms this.
Consider a user for whom we have his or her number of friends
on n sites. Let f,f,,...,f, denote the number of friends of this user
on these sites. Let f ., = max(fy,fs,....f,). We find f., for all
users in our dataset and group these users based on how many
sites they have joined (n). We take the average f., for users in
each group. Fig. 1(a) plots the average maximum friend count
fmax for users that have joined different numbers of sites (n). We
observe that as users join more sites, their maximum friend
count across sites on average increases. A linear line
(g(x) = 309.8x — 0.005177), found with 95% confidence, fits to the
curve with adjusted R?> = 0.9978. R* is the coefficient of deter-
mination and R*> =1 denotes that a line perfectly fits the data.
Hence, the expected maximum friend count across sites for users
that have joined n sites is approximately n times more than that
of users that have joined a single site. Similarly, one expects that
as users join more sites, it becomes more likely for them to become
inactive on some sites. Our data also confirms this. Fig. 1(b) shows
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Fig. 1. Average minimum and maximum numbers of friends for users that have
joined different numbers of sites.

the average minimum numbers of individuals befriended across
sites as users join more sites. We observe a decrease in the mini-
mum number of friends across sites as users join more sites. A
power function (g(x) = 65.03x-12°1), found with 95% confidence,
fits this curve with adjusted R* = 0.9878. In other words, unlike
the likelihood of having many friends that increases linearly as
users join sites, the probability of having a few friends increases
exponentially. Having said that, one can conjecture that (1) as
the minimum friend count across sites is decreasing more sharply
than the maximum, one should expect a decrease in the average
number of friends individuals have across sites. As an alternative,
one can conjecture that (2) the average number of friends should
increase because the maximum number of friends individuals have
across sites is much higher than the (few) number of friends they
have on sites that they are inactive.

Our data shows that neither of these conjectures are valid for
average numbers of friends across sites. Fig. 2 shows the average
numbers of friends users have across sites as they join more sites.
The figure shows that as users join more sites their average num-
ber of friends increases; however, once they join around 6 sites this
average converges at around 400 friends. This average does not
change much as users join new sites. This finding is in line with
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Fig. 2. Average numbers of friends for users that have joined different numbers of
sites.
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previous [12] and recent [13-15] literature on human cognitive
limitations in maintaining communication and friendship with
large groups of individuals.

There could be different explanations why the average of a dis-
tribution converges as we add more data points. For instance, by
adding equally dispersed data points one can maintain the mean.
To understand better how users befriend others, it is natural to
observe how standardized moments of the friend count distribu-
tion changes. In particular, skewness [16], the third standardized

3
moment <[E {(’““) D and kurtosis [17,18], the forth standardized

i
4
moment ([E{(’%) D can help us understand why the average

number of friends converges as users join more sites.

Skewness shows where the mass of the distribution is concen-
trated and whether the left or right tail of the distribution is longer.
Skewness of 0 demonstrates a normal distribution where the mean
is equal to the median. A positive skewness shows that while
extreme values exist to the right of the distribution, the mass of
the distribution is concentrated on the left of it. Negative skewness
shows the opposite. For example, sample: {1,2,3,1000} has a posi-
tive skewness and sample: {1,1001,1002,1003} has a negative
skewness. To account for small-sample bias, we compute the
bias-corrected skewness for sample x = (xq,X,...,X,) as follows:

1 1S (% —X)°
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( %Zi:] (X — X) >

where x is the mean for x. For each user, we compute the skewness
of the user’s friend counts across sites. Fig. 3 shows the empirical
cumulative distribution function (Kaplan-Meier estimate) for these
user skewness values for users that have joined different numbers
of sites. We observe that most of the skewness values are positive
showing that while there are extreme friend count values, the mass
of the friend count distribution is concentrated on the left.
Furthermore, we see that as users join more sites, the cumulative
distribution function (CDF) moves to the right, showing that as
users join more sites, the proportion of sites where they have fewer
friends increases. In other words, users that have joined a few sites
are more likely to be highly active on some sites compared to those
users that joined more sites. Although we now know that users are
more likely to have fewer friends on most sites they join, it is not
known how these fewer friend counts are distributed. To observe
where these fewer friend count values are concentrated, we
measure the kurtosis of the distribution.

Kurtosis value of a distribution measures the peakedness of a
probability distribution and how heavy-tailed it is. We use the
bias-corrected kurtosis for small sample x = (x1,X2,...,Xn):
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Fig. 3. Empirical cumulative distribution for skewness of friend distribution as
users join more sites.
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A kurtosis value of 3 shows a normal distribution and a value
greater than 3 shows a leptokurtic distribution that has a more
acute peak around the mean and more heavy tails. Similarly, a neg-
ative kurtosis value shows a platykurtic distribution with a less
pronounced and wider peak. For each user, we compute the kurto-
sis of the user’s friend counts across sites. Fig. 4 shows the empir-
ical cumulative distribution (Kaplan-Meier estimate) for these
user kurtosis values for users that have joined different numbers
of sites. The graph shows that most kurtosis values are more than
3, denoting that the users’ friend counts are more concentrated
around the mean than normally expected. Furthermore, we
observe that the CDF curves move to the right for users that have
joined more sites. In other words, users’ friend counts across sites
tend to concentrate more around the mean value as users join
more sites. Since we know from skewness analysis that users
befriend a few others on most sites they join, this shows that the
number of few individuals befriended are concentrated around a
mean value. In other words, each user has almost the same number
of friends (e.g., 10 friends) across most sites. The mean value varies
for different users.

The initial increase in the average number of friends shows that
when users join a few sites, it is more likely for them to get
engaged while befriending many; however, as they join more sites,
they start to become inactive in those sites and the average
converges.

3)

4. How popularity changes across sites

We have analyzed how the number of friends varies across
sites. In this section, we perform similar experiments to analyze
how user popularity changes across sites. To measure popularity
we note that users with many friends are often considered popular
users. So, a natural way to quantify popularity on a site is to use
individual’s friend count. However, the same number of friends
on different social networks implies different levels of popularity
due to different distributions of friend counts. For comparison,
one can simply convert the friend count to the probability of
observing the friend count, which is comparable across sites. A
lower probability indicates a higher popularity. It is well known
that the distribution of friend counts in a social media site often
follows a power-law distribution [19,20]. Hence, we perform the

Kurtosis (x)

Fig. 4. Empirical cumulative distribution for kurtosis of friend distribution as users
join more sites.
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systematic procedure outlined in [21] for each of our 20 sites to
determine their parameters for the power-law distribution. For
integer values, the power-law distribution is defined as

X%
Z../(05794711171) ’

p(x) = (4)

o0

(0t Ximin) (N + Xpmin) ™ (5)
=0

n

is the generalized Hurwitz zeta function, « is the power-law expo-
nent and X, is the minimum value for which for all x > x;;,, the
power-law distribution holds. We estimate « and x;;; using a finite
sample correction bias using the maximum likelihood method out-
lined in [21]. Given these parameters, for any friend count f > X,
we estimate the probability of observing f (i.e., p(x =f)) using
Eq. (4).

Recent studies show that using the power-law distribution may
not be always appropriate for modeling the friend count distribu-
tion of social networks [22,23]. Hence, when f < Xp,, instead of
using Eq. (4), we use the maximum likelihood estimate of p(f),

Iy

p(f) =—

n )

(6)

where 7 is the number of users on the site with f friends and n is
the total number of users on the site.

Following this approach, we estimate the probability of observ-
ing all friend counts in our dataset; hence, having the popularity of
all users in our data across sites. Given these user popularity values
across sites, we first measure how the average popularity varies
across sites. Fig. 5 provides average popularity for users that have
joined different numbers of sites. Notice that convergence also
takes place for user popularities. Users are least popular when they
have joined a single site and they are most popular, when they
have two or more accounts. Popularity saturates much faster and
as users join sites, their average popularity remains unchanged.

While the average popularity shows how users popularity
changes across sites on average, it does not show how a user’s pop-
ularity changes as he or she joins new sites. This is because we
have no temporal information on what sites were joined first and
how popularity increased or decreased over time. However, one
can approach this problem by computing the expected popularity
change over time.

Consider a user for whom we have his or her number of friends
onnsites. Let f1,f,,...,f, denote the number of friends of this user
on these sites. Among the n sites that the user has joined, there
must be a site that is joined after all others. Since we have no tem-
poral information, the last site could be any of the n sites. We con-
sider n cases. In each case, we consider one of the sites as the last
site that the user has joined and the other n — 1 sites as the sites
that the user has joined in the past. In case 1 < i < n, we consider
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Fig. 5. Average popularity for users that have joined different numbers of sites.

0.04

0.03

0.02 - gl

0.01

Average Popularity Increase

o2 4 6 8 10

Number of Sites

Fig. 6. Average popularity increase for users that have joined different numbers of
sites.

that the user in the n— 1 sites has f,f5,....f. , friends and f,
friends on the last site. The popularity values can be estimated
by computing the probability of observing each friend count:
p(fﬂ),p(f;), S ,p(fi). For the n — 1 sites that the user has joined,
the maximum popularity that the wuser achieved is

min(p(f}), p(fb), ..., p(f")). The user has become more popular on
the nth site if and only if,

min(p(f}), p(fy). ... p(f}) < P(fy)- (7)

Thus, we measure popularity increase for case i as

p(f}) — min(p(f}). p(fy), - .., p(f}))- 8)

Since, the last site that a user joined is not known, we compute
the expected popularity increase as

n
%2[130”,.) — min(p(f).p(fy)..... o). 9)
iz
The average expected popularity increase for users that have
joined different numbers of sites is provided in Fig. 6. The figure
shows that users tend to increase their popularity faster as they
join more sites; however, there is a cap to the level at most a user
can increase his or her popularity and this level is as users join 7
sites.

5. Predicting user popularity

We have demonstrated that user friendships and popularity
exhibits specific patterns as users join sites. This brings about a
challenging, yet unexplored question: can one predict user’s
popularity on a new site?

Predicting user’s popularity can not only help recommend new
sites to users as they search for new sites on the web, but more
importantly, can help sites identify users that are more likely to
be interested in joining and becoming active on them. One expects
a rather complicated solution to this problem. An approach that
has access to different types of information and users’ interests
and a matching procedure that identifies sites on which users are
most likely to become active. Even then, one needs to know if
the site includes friends of an individual for better popularity
prediction.

If the popularity patterns is our data were meaningless, one
should not be able to observe their effect in predicting user’s pop-
ularity. By extracting popularity patterns a user has exhibited in
the past, one can predict the popularity of a user in the future. In
this section, we demonstrate how one can use only popularity pat-
terns and outperform baseline methods that use no popularity pat-
terns, safely concluding that the obtained popularity patterns can
be used to predict user’s popularity.
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For any user in our dataset that has joined n sites, we assume
that given the user’s popularity level on n — 1 of these sites, the
popularity of the nth site should be predictable. To determine the
popularity level of users in sites, we divide the users on each site
into five categories. These categories are based on the level of pop-
ularity and their proportion are inspired by the diffusion of innova-
tions theory [24], where individuals depending on their time of
adopting a new product are categorized into 5 categories: innova-
tors (top 2.5%), early adopters (next 13.5%), early majority (next
34%), late majority (next 34%), and laggards (last 16%). For each
site, we divide users into 5 categories based on their level of pop-
ularity: elites, highly popular, averagely popular, averagely unpop-
ular, and unpopular users. We use popularity categories instead of
the actual probability as this introduces a generalizable prediction
algorithm as users with different probabilities and new sites
appear on social media. Thus, for each user that has joined n sites,
we generate all the (,",) = n combinations of n — 1 sites as histor-
ical data. For each combination, we construct a data instance of 5
features, each representing a popularity level. For each popularity
level, we count the number of sites the user has joined in the past
among his or her n — 1 sites and has expressed that level of popu-
larity. We set the class label as the popularity level for the user in
the nth site (i.e., a value in {1,2,3,4,5}). We generate 39,130
instances. Our initial attempt to predict the class label in this data-
set using Naive Bayes classifier predicts user popularity with an
accuracy of 38.50% and an AUC of 0.618. The area under the ROC
curve (AUC) is a criterion used to measure the quality of a classifi-
cation algorithm and ranges between 0.5 and 1. To determine the
sensitivity of our results to the learning bias of different algo-
rithms, we test a variety of classification techniques. The results
are provided in Table 1. We observe minimal sensitivity to learning
bias, showing that one can reasonably predict user’s popularity
regardless of the classification algorithm. Logistic Regression per-
forms the best with 39.26% accuracy in predicting user popularity
and an AUC of 0.627. Thus, logistic regression is used for the rest of
our experiments. Note that in the dataset constructed, the proba-
bilities were converted to popularity categories (i.e., discretized)
based on unequal frequencies. Hence, we also experimented when
binning probabilities with equal frequencies (20% intervals). While
the performance dropped in this new dataset for logistic regression
with an accuracy of 27.29% and an AUC of 0.605, the difference was
not significant. Therefore, we continued our experiments with
the initial dataset were probabilities were discretized according
to diffusion of innovations theory.

In our data, users have joined different numbers of sites. To ver-
ify helpfulness of adding more sites on user popularity prediction,
we partition our dataset. Partition i contains the set of users that
have already joined i sites. We perform popularity prediction for
each partition. Fig. 7(a) shows that the prediction results (accu-
racy) for each partition does not variate much. The figure also
shows as a dashed line the majority class predictor for each parti-
tion and the random prediction results. The majority baseline pre-
dicts the popularity level of all users in the partition as the
popularity level that is most common among the (training) users
of that partition. Since the partitions were slightly imbalanced,
we also computed the AUC and found that it was mostly fixed with

Table 1
Site recommendation performance.

Technique AUC Accuracy (%)
Logistic regression 0.627 39.26
SMO (sequential minimal optimization) 0.574 38.84
J48 decision tree learning 0.604 38.82
Random forest 0.612 38.63
Naive Bayes 0.618 38.50
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Fig. 7. Performance for popularity prediction.

an average AUC of 0.6273. The same figure shows that for all cases,
we outperform the majority predictor, proving that popularity pat-
terns across sites can help predict the popularity of a user on a new
site.

Fig. 7(a) also shows that as users join more sites and more
information becomes available the gap between the prediction
outcome and the majority class starts to increase. The gap increase
is provided in Fig. 7(b). The gap increases exponentially, fitting a
power function (g(x)=8.65 x 10°x>%8 1 7.506) with adjusted

R? = 0.9494. In other words, as more popularity patterns of a user
becomes available to the prediction algorithm, one can predict
user’s popularity exponentially better.

6. Related work

Studying friendships and popularity on social media sites has a
long history. The friendship network and popularity is often stud-
ied on a single site. Other related areas to this work are (1) analyz-
ing dynamics of multiple networks and (2) analyzing user behavior
across social media. We briefly review related research from each
of these three areas and outline how this work stands compared
to its related work.

6.1. Single-site friendship and popularity analysis

When considering only the number of friends individuals have,
the analysis boils down to analyzing the degree distribution of
social networks [25,26]. It has been shown multiple times that
the degree distribution of these social networks follows a
power-law distribution [27,28]. This study follows a similar
approach; however, at a multi-site level, where we analyze how
number of friends (degrees) changes across sites. Unlike the com-
mon degree distribution analysis where millions of nodes are ana-
lyzed to determine the degree distribution, with multiple sites, the
number of available samples is limited to a few numbers. Hence,
we take a different approach in this paper by observing how the
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number of friends change across sites with the help of statistical
measures.

6.2. Analyzing dynamics of multiple networks

Comparing network characteristics of multiple networks has
been the subject of recent studies [29-31]. For instance, Mislove
et al. [29] analyze 4 networks: Flickr, YouTube, LiveJournal, and
Orkut and demonstrate that these networks exhibit various prop-
erties such as being scale-free and having a densely connected core
of high-degree nodes. Although these studies analyze multiple net-
works, the analysis is performed irrespective of the users that are
shared across networks. Our work focuses on how friends of shared
users across networks are distributed and how popularity for the
users changes across social media sites.

6.3. Analyzing user behavior across sites

Considering befriending as a behavior of individuals, the recent
studies that analyze user behavior across sites becomes relevant to
this work. Some studies analyze how a specific behavior changes
across sites without considering users that are shared across sites
[32]. Other recent studies consider a specific behavior across sites
such as Tagging [33,34], but for users that are shared across sites.
Our work is related to both as it analyzes the variation of an unex-
plored behavior (i.e., befriending) and user popularity across sites
for users shared across sites.

7. Conclusions and future work

Social media users are members of multiple sites. For a system-
atic study of users on social media one has to combine their infor-
mation across sites. In this study we investigate how this
information varies across sites. We focus on the most fundamental
information available across social media sites: user friends and
their popularity.

By studying user friendships and popularity across sites, we
showed that the maximum number of friends individuals have
across sites increases linearly as users join sites and their mini-
mum drops exponentially. Furthermore, we noticed that as users
join sites their average number of friends converges to a value near
400. We investigated this phenomenon even further and showed
that as users join sites, the likelihood of observing fewer friend
counts increases and at the same time, users frequently exhibit
their mean behavior, such as always befriending 10 people. This
frequent behavior of befriending a few friends on most sites leads
to users converging to an average of 400 friends across sites.

By computing the power-law distribution parameters for these
sites, we computed user popularity on sites. We found that popu-
larity follows the same trend as in friend counts, converging to an
average value. This result shows that users joining multiple sites
cannot increase their average popularity and that the average pop-
ularity converges to a fixed value as users join sites. We also
demonstrated that as users join sites, the amount their popularity
can increase has a constant upper bound. Finally, we showed how
the popularity patterns of users can be used to determine their
popularity on future sites. Using a straight-forward approach we
showed that as patterns of popularity become available to the
popularity prediction algorithm, the algorithm gains exponential
performance gain over baselines.

The study presented in this paper has multiple implications. It
not only allows for popularity prediction across sites, but can also
be combined with studies that predict what sites users will join
[35]. Once sites that users will join are predicted, methods dis-
cussed in this paper can help identify users that are more likely

to become popular, which in turn can help sites determine users
with the highest priority for friend recommendation algorithms
[2].

While data collection for our study was challenging, we believe
with more data regarding the behavior and interests of users across
sites, one should be able to obtain deeper insights into how users
change behavior across sites and improve the performance of site
popularity prediction. While our data did not contain temporal
information, with temporal information, one can effectively mea-
sure how joining a site influences popularities on other sites and
how increase in one site’s popularity can influence popularities
on other sites. Furthermore, one can cluster sites based on popular-
ity patterns and predict popularity in future sites based on the
category of sites the new site belongs to. We consider these
as promising future directions for this work.
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