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People use various social media sites for different purposes. The information on each site is often partial.
When sources of complementary information are integrated, a better profile of a user can be built. This profile
can help improve online services such as advertising across sites. To integrate these sources of information, it
is necessary to identify individuals across social media sites. This paper aims to address the cross-media user
identification problem. We provide evidence on the existence of a mapping among identities of individuals
across social media sites, study the feasibility of finding this mapping, and illustrate and develop means
for finding this mapping. Our studies show that effective approaches that exploit information redundancies
due to users’ unique behavioral patterns can be utilized to find such a mapping. This study paves the way
for analysis and mining across social networking sites, and facilitates the creation of novel online services
across sites. In particular, recommending friends and advertising across networks, analyzing information
diffusion across sites, and studying specific user behavior such as user migration across sites in social media
are one of the many areas that can benefit from the results of this study.
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1. INTRODUCTION

Advertisement revenue is often a principal sources of finance for a sustainable social
networking site. Web giants such as Google report a $50.57 billion dollar yearly ad
revenue!; that is 91% of Google’s annual revenue?. The same consistent pattern is
observed among other internet sites such as Facebook or Yahoo!. Thus, internet sites
are often interested in increasing the success rate of their ad campaigns.
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It is well-known that the relevance of ads to the interests of individual users can
directly impact the success of an ad campaign. To have relevant ads, it is required to
have a good understanding of individuals, which can be achieved by profiling users.
Though a growing number of people use social media, people use various social media
for different purposes, and the information about an individual on each site is often
limited. Though each site has only limited information about a user, other social media
sites could provide complementary information for the user, and integrating informa-
tion from various sites can help build better user profiles. However, for combining these
sources of complementary information, one has to reliably identify corresponding user
identities across social media sites. Companies such as Yahoo! often sign agreements
with other companies to connect their user base for better marketing and a richer user
experience. However, preliminary attempts to match users across sites even for these
companies are challenging as users provide limited or no information for matching
purposes [Communication 2013].

This paper proposes an alternative solution to connecting users across social me-
dia sites by exploiting the nature of social media and its networks. Connecting user
identities across social media sites is not a straightforward task. The primary obstacle
is that connectivity among user identities across different sites is often unavailable.
This disconnection happens since most sites maintain the anonymity of users by allow-
ing them to freely select usernames instead of their real identities, and also because
different websites employ different user-naming and authentication systems. More-
over, websites rarely link their user accounts with other sites or adopt Single Sign-On
technologies such as openlD, where users can logon to different sites using a single
username (e.g., users can login to Google+ and YouTube with their GMail accounts).
Regardless, there exists a mapping between usernames across different sites that con-
nects the real identities behind them. Can we find this mapping?

In this article, we provide evidence on the existence of a mapping among identities
across multiple social media, study the feasibility of finding this mapping, and illustrate
and develop means for finding it.

The need for identifying corresponding users across different social media is mul-
tifold. In addition to the aforementioned marketing example, we illustrate the need
using multiple examples.

(1) User Migrations. Consider the migration of users in social media [Kumar et al.
2011]. Users often migrate from one social network to another due to their limited
time and the better quality of service they receive at the destination network.
Given a mapping among identities of users across these two networks and their
membership dates (or dates where they started their activity on the destination
network), a migration can be detected. The network from which users are migrating
can decrease the migration rate by detecting it early and can also improve its site
by introducing the additional features and services that the destination network
provides.

(2) Enhancing Friend Recommendation. Better friend recommendations can help
increase user engagement in social media sites. Often, nonconnected users that
share mutual friends are recommended as potential friends. Consider the following
example. John and Catherine are not connected and are both friends of Russ on
social network S;. Thus, Catherine seems a good candidate for recommendation
to John on S;. Catherine and John are also members of social network S; and
are also not connected on Ss. Assume that Catherine and John share no mutual
friends on Sy. With the information that we have from S, the recommendation
algorithm could recommend Catherine to John on Sy, even though they share no
mutual friends on Ss.
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This type of recommendation is only possible when there is cross-site comple-
mentary information. Cross-site friendship information will increase the recall of
the friendship recommendation algorithm by recommending more known friends,
as well as its accuracy by having more information about the network.

(3) Information Diffusion. Information diffusion is commonly measured within the
context of a single social network. In reality, information can flow within and across
different social networks. Thus, it is of interest to investigate whether information
diffuses more within one network or across networks. Moreover, what type of infor-
mation propagates more within a network and what type propagates more across
networks?

(4) Multiple Network Group Interaction. By connecting users across sites, one can
analyze group interaction across sites. Multiple-network group interactions can be
viewed as an instance of single-net group interactions by combining the graph of
all connected social networks. Thus, methods proposed for single network group
interaction analysis [Tang et al. 2012a] can be generalized for multiple networks.

(5) Analyzing Network Dynamics. Dynamics of single-site social networks are well-
studied in the literature. These networks are known to have a power-law degree
distribution, a small average path length, and being highly clusterable [Zafarani
et al. 2014]. However, users belong to multiple sites and these network proper-
ties need to be generalized to multiple networks. In particular, it is interesting to
determine how close the dynamics of single networks are to that of multi-networks.

To approach the earlier mentioned problems, one has to first identify users across
sites. Our methodology for identifying users across sites is based on unique behavioral
patterns that individuals exhibit on social media. Our methodology has direct roots in
behavioral theories in sociology and psychology. These behaviors are due the environ-
ment, personality, or even human limitations of the individuals and are manifested in
the content and link individuals generate on social media. Our methodology performs
feature discovery [Scott and Matwin 1999; Cormack et al. 2007] to capture traces that
these behaviors leave in social media for user identification. Before introducing our
methodology, we discuss the types of information that can help us identify users across
sites.

Network structure and friendship information is known to carry information that
could prove useful in many tasks, such as link and attribute prediction, spam detection,
behavioral analysis, and group behavior. Recent studies have indicated that link-based
methods outperform many other techniques on various tasks. In Agrawal et al. [2003],
the authors show that their link-based algorithm exhibits a significant accuracy ad-
vantage over the classical text-based methods for mining certain newsgroups. More-
over, it is well established that link-based methods are more resilient to spam attacks
[Gyongyi et al. 2004]. Examples from social networks include systems that are designed
using link-based methods that combat unwanted communications [Mislove et al. 2008]
or that guard against Sybil attacks [Tran et al. 2009; Yu et al. 2006].

Recent interest in the information that immediate links (friends) carry about an
individual has brought with it interesting results. When tracking link formation in
online sites, Kossinets and Watts [2006], and on a larger scale Leskovec et al. [2008],
found that the likelihood of forming links increases steadily as the number of common
friends increases. In similar membership closure studies [Crandall et al. 2008], it
has been shown that the same increasing trend can be observed when analyzing the
probability of joining a community as a function of the number of friends who have
already joined. In another study, Backstrom et al. [2006] show that the tendency of an
individual to join a group is influenced not only by the number of friends the individual
has within the community, but also crucially by how they are linked to one another.
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These results suggest that it should be reasonable to use link information to identify
users across social networks. The link information and in particular friends (immediate
links) of an individual can form a “social signature” of the user that can be employed
to identify the individual across networks. We will next detail the link-based approach
taken in order to identify individuals across social networks in Section 2. This section
paves the way for Section 3, which completes the description for our user identification
methodology and is followed by a review of the related work in Section 4. We conclude
and discuss our future work in Section 5.

2. LINK-BASED USER IDENTIFICATION

Let us formally define the problem of identifying individuals across social media sites.
Without loss of generality, we focus on two social media sites and a single individual
in this study. This is reasonable because solving the problem of two sites can be easily
generalized to the problem of n sites by considering n sites in a pairwise manner. The
same argument holds for more than one individual. Following the tradition in machine
learning and data mining research, we solve the problem given some available labeled
information. This labeled information is the known part of a one-to-one relationship
that connects users that coexist on both networks. In this article, we call this labeled
information “the mapping”. The mapping for these two social networks contains a set
of known individuals and their identities on both these networks; it basically denotes
“who on this network is who on the other?”. Finally, we focus on situations where the
identity of the individual on one of these websites is known, for example, profile of
someone is known on Twitter; can we find his profile on Facebook?

When using link information, a social network S is represented using a graph
Gs(Vs, Es) and the identity of an individual is represented using a node v (vertex)
in this social graph, that is, v € Vs. The mapping connects a node in the base-site’s
graph to its corresponding node in the target-site’s graph.

Definition (Link-Based User Identification). Given two social media sites S; (base-
site) and Sy (target-site) and their respective social network graphs Gs,(Vs,, Es,) and
Gs,(Vs,, Es,), a mapping M C Vg, x Vg, that identifies a subset of users across these
networks and an individual u whose identity (a vertex v; € Vs, ) we know on S; (base-
node), a link-based user identification procedure attempts to resolve the identity (a
vertex v; € Vs,) of u on S (target-node).

We introduce two techniques to identify users across sites based on link information.
The first technique uses only local information (i.e., neighborhoods and shared friends)
to identify users across sites. The second techniques utilizes global network information
(i.e., the whole graph) to identify users across sites.

2.1. A Local Link-Based Method for Identifying Users

We introduce an iterative method for identifying users across sites using local link
information. The method considers users across sites that share most mutual friends
across sites as identities of the same individual. Our intuition is that as users join
multiple sites, it is more likely for them to become friends with individuals that they
have befriended on other sites. So, nodes that share most common friends across sites
are more likely to be the same user. Inspired by the success of methods that utilize
common friends within one site, our method employs the same heuristic across sites.
The method’s pseudocode is outlined in Algorithm 1, in which, F(i, S) denotes friends
of user i on site S.

The method starts from the users not in the mapping, and it acts similar to the
semisupervised learning algorithms and in particular co-training [Zhu 2005]. In the
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ALGORITHM 1: The Link-based Iterative Method for Identifying Individuals

Input: Gs,(Vs,, Es,), Gs,(Vs,, Es,), Mapping M, v; € Vg, (base-node)
Output: v; € Vg, (target-node) or NIL
shouldContinue = True, targetNode = NIL;
while shouldContinue do
My = {i|@, j) € M}, My = {jI(i, j) € M}; ), Nodes in the Mapping
ifVSl \./\/ll = VJOT’VSZ \MZ = () then
| shouldContinue = False, break while; % No More Users Left
end
% Find Users with the Maximum Number of Friends among Mapping Nodes
x = argmax; |F(@, S)) N Mil, s.t., i € Vg \ My;
y = argmax; |F(j, §,) N My, s.t., j € Vi, \ Mo;
if x = v; then
| targetNode = y, shouldContinue = False, break while; % Target Found
end
M=MU{(x,y)}; % Add an Identified Pair to the Mapping
end
Return targetNode;

pseudocode, the users already mapped in S; (S3) are denoted as M; (My), and the
users not mapped are denoted as Vs, \ M; (Vg, \ My).

The method then maps two users to one another across networks based on their
number of friends inside the mapping. Here, we find two users, one on each network,
who have the most number of friends among users in the mapping, and we assume
these users represent the same individual.

Since these two users are assumed to represent the same individual, they are added
to the mapping.

This process is continued until no further user is identified on both networks (V, \
My =0 or Vs, \ My =), or the required user is found on both networks.

The method only considers the local neighborhood of nodes. Our next method consid-
ers global network structure to identify users across sites.

2.2. A Global Link-Based Method for Identifying Users

The local algorithm only considers nodes in the mapping that are one-hop away. The
algorithm can be modified in order to consider nodes in the mapping that are more than
one-hop away. For each node, the number of nodes in the mapping that are 1...k hops
away can be computed and a k-dimensional vector can be used to represent users. The
distance between these vectors could help identify the identities of the same individual
and in turn, grow the mapping. A more sophisticated approach is to use the topology of
the induced subgraphs of the nodes in the mapping and the nodes connected to them.
We can assume that the two networks are two different views of the same underlying
structure. In other words, we assume that users possess a specific friendship behavior
and the way they befriend others across different networks are just different ways that
they exhibit this behavior. We expect these networks to be highly correlated and thus
a transformation between them can be computed.

The base-site and target-site graph can be represented as an adjacency matrix. Let us
call these matrices A; and Ay. An additional preprocessing step is usually taken in order
to extract structural features of the graphs. For preprocessing purposes, the normalized
Laplacians, £1 and L, for each graph is calculated. The normalized Laplacian £ for
adjacency matrix A is calculated as follows

L£=D'?LD™ 2 (1)
L=D-A, (2)
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where D, also known as the degree matrix, is a diagonal matrix where each entree on
the diagonal represents the degree of the node. L here represents the unnormalized
Laplacian matrix. After computing the normalized Laplacians, the % top eigenvectors
of the matrix are extracted and are used instead of the adjacency matrix. This ma-
trix can better represent the structural features of the graph when compared with
the adjacency matrix [Tang et al. 2012¢]. Different £’s were tested in our experiments,
k= 3,5,20,50, 100, 200, 500. For values above 50, our results did not improve much;
therefore, we used £ = 100 for our experiments. Let us call these new matrices Xj; and
Xs. We take the mapping part of these two matrices (corresponding mapped rows) and
call them X7" and X'. Assuming there exists a linear transformation, the transforma-
tion W can be found using the following optimization

min || XT'W — X7'||,.. 3)

The transformation W can be efficiently computed using a least square approxima-
tion. After the weights are obtained, the unmapped part of matrix X; can be multiplied
by W and then compared with the unmapped part of Xs. Rows (users) with the highest
similarity are assumed to be the same individual.

2.3. Empirical Study

2.3.1. Evaluating the Link-Based Method.

Evaluation with Synthetic Data. To conduct a systematic evaluation of the pro-
posed methods, we generated a set of synthetic datasets. These synthetic datasets must
contain mapping information (labeled data). For synthetic dataset generation, we ad-
here to the following procedure: (1) a real-world social network was gathered and used
as the base-site; (2) the base-site’s network was copied as the target-site; and (3) noise
was introduced on the target-site. Three common types of noise were employed, namely:
(i) randomly adding edges to the target-site with probability p, (ii) randomly remov-
ing edges from the target-site with probability p, or (iii) randomly rewiring [Watts
and Strogatz 1998] edges from the target-site with probability p, 0% < p < 100%.
In rewiring, for every disjoint pair of random edges (a, d), (¢, d), we swap their end
points to get new edges, (a, ¢), (b, d). This makes sure that the degrees are preserved
for every node in the target-site graph. Based on the types of noise introduced and
the probability value p, we call these datasets SYN_ADD(p), SYN_REMOYV E(p), and
SYN_REWIRE(p), respectively. The mapping is obvious in the case of synthetic data,
and for every node in the base-site, the mapping connects it to the corresponding copied
node in the target-site. For the real-world network used in our synthetic dataset gen-
eration, we employed a collection of 11 large scale social media datasets (see Table I)
obtained from the social computing data repository [Zafarani and Liu 2009b].

We conduct experiments on synthetic data to verify if our link-based methods perform
effectively in a controlled environment. We start with no noise (p = 0) and notice that
the local method is not even accurate for cases where no noise is introduced. This is a
result of many nodes having the same number of friends among mapping nodes. Table I
shows the accuracy rate of both methods in the case where no noise is introduced over
all synthetic datasets. The table shows that the local method is, in eight out of eleven
cases, less than 2% accurate, and the best accuracy rate obtained is less than 7%. On
the contrary, the global model is highly accurate with no noise and is at least 79%
accurate and at times, up to 98% accurate. Next, we added noise. We used BlogCatalog
dataset as the real network required for synthetic data generation. Part of the mapping
was used for training and the rest for testing. 10-fold cross-validation was used and the
average accuracy for correctly predicting identities in the testing part of the mapping
was recorded. Figure 1 depicts these accuracy rates for the local method and for cases
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Table I. Prediction Accuracy for Different Social Networks

Nodes Edges Accuracy Accuracy
Site (Mapping size) | (Friendship links) | (Local method) | (Global method)
Blogcatalog 88,784 4,186,390 6.93% 89.3%
Buzznet 101,168 4,284 534 5.11% 79.7%
Digg 116,893 7,261,524 1.81% 91.4%
Douban 154,907 654,188 1.78% 84.1%
Flixster 2,523,386 9,197,338 0.57% 96.6%
Friendster 100,199 14,067,887 0.32% 91.3%
Foursquare 106,218 3,473,834 0.53% 98.0%
Hyves 1,402,611 2,777,419 0.37% 95.0%
Last.fm 108,493 5,115,300 0.76% 95.6%
Livemocha 104,438 2,196,188 4.57% 96.4%
YouTube 1,138,499 2,990,443 4.57% 90.5%
(a) Edge Addition (b) Edge Removal (c) Edge Rewiring

Fig. 1. Prediction accuracy for different percentage of edges added/removed/rewired.

where with different probabilities, edges were being added, removed, or rewired. As
seen in these figures, the local method performs quite poorly on synthetic data. The
average accuracy rates for SYN_ADD(p), SYN_REMOVE(p), and SYN_REWIRE(p)
were 4%, 1%, and 1%, respectively. The results did not improve much for the global
method. With p = 0.5, the accuracy rates for SYN_ADD(p), SYN_REMOVE(p), and
SYN_REWIRE(p) were 6%, 10%, and 0.01%, respectively. Next, we evaluate the per-
formance of the methods with real-world datasets.

Evaluation with Real-World Data. We gathered two real-world datasets. For col-
lecting real-world datasets, we require additional mapping information about identities
across social media sites. Fortunately, there exist websites where users have the op-
portunity of listing their identities (user accounts) on different social networks. For
instance, on Facebook users can list their usernames on different sites. This can be
thought of as labeled data for our learning task since it provides the accurate mapping
for our experiments. In addition to labeled data, these websites provide strong evidence
on the existence of a mapping between identities across social media sites. Later on,
in Section 3.2.1, we discuss the procedure for collecting mapping information in detail.
From sites that provide such mapping information, we gathered individuals that had
account on two sites: Flickr and BlogCatalog, due to their large network size and many
overlaps.

We collected two disjoint sets of individuals. All individuals had accounts on both
BlogCatalog and Flickr. We call these sets Z; and 7y (Ze N Ze = ¢). For each member
of these sets, we collected their identity on both BlogCatalog and Flickr. Then for
individuals in Z; and for each of their two identities, we collected all the users who
were within a three-hop distance in the respective network using a Breadth-First-
Search crawling procedure [Menczer 2007]. For Z;, however, we only crawled users
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Table Il. Real-World Dataset Properties

Dataset BlogCatalog network size | Flickr network size Mapping size |[M|
BF3Hop 88,784 users 564,491 users 1,747 individuals |Z1 |
BF1Hop 1,455 users 630 users 546 individuals |Zg|

Table Ill. Performance of Link-Based Methods
on Real-World Datasets

Dataset Local method | Global model
BF3Hop ~0 ~0
BF1Hop 0.3% 0.6%

who were within a one-hop distance (immediate friends). Hereafter, we will refer to
the network datasets created from 7Z; and Zs as BF3Hop and BF1Hop, respectively.
Table II provides some statistics about the cardinalities of these datasets.

These datasets help showcase the effect of nonimmediate link information on the
performance of our proposed algorithms. This is true since BF3Hop contains nonim-
mediate information, whereas BF1Hop lacks this property.

We evaluate both methods on real-world datasets. We apply the local method to our
real-world datasets and 10-fold cross-validation is employed to measure accuracy. The
method failed on both datasets with an average accuracy rate of 0.3% on BF'1Hop and
~ 0 on BF3Hop. Similarly, we evaluated the global model. However, the results did
not improve much. For real-world datasets, the accuracy rate were 0.6% on BF1Hop
and 0% on BF3Hop. Table III summarizes the results of link-based methods on the
real-world datasets.

We have shown that using both local and global information, poor performances
are expected when using real-world datasets. The question is whether there are any
properties in real-world datasets that need to be considered in order to obtain higher
accuracy rates. We investigate this question next.

2.3.2. Investigating Properties of Real-World Datasets. To further investigate this, let us
present various hypotheses regarding the properties of the users that are in the map-
ping. These link-related properties that identities share when representing the same
individual across different networks can be employed when designing methods for iden-
tifying users across social networks. Each of these hypotheses is empirically evaluated.
The observations gathered while evaluating these hypotheses can be used later to help
construct link-based methods.

To simplify the notation in these hypotheses, let x; be a user (node), and F(x;, S) the
set of friends user x; has on site S. For two users x; € S, x2 € Sg that belong to two
different sites, we define the concept of shared-friends across networks. In this case,
they are the set of people who coexist on both S; and Se and are friends with both x;
and xg. For clarity, shared friends are depicted in Figure 2. In this figure, the mapping
consists of three pairs and is shown using dashed lines and black circles denote shared
friends between x and y. The concept is formalized as follows

SF(x1,x2) = {(y1,¥2) |y1 € S1, y2 € Sa. (y1, y2) € M,
y1 € Flx1, 81), y2 € Flag, S2)}.
We also define the concept of crossed-over friends for a user x. These are the corre-
sponding identities, on the other site, for the friends of x who are members of both sites.

So, if x is a member of Sy, this set includes identities on Sy for those friends of x that
are members of both sites. Formally

CRs—s,(x) ={y|y € Sg,Ix" € Flx, S1),s.t., (x',y) € M}.
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SZ

Fig. 2. A visualization of two social networks and the mapping. Social network S; consists of the nodes
on the left and social network Sg consists of the nodes on the right. Dashed lines denote the mapping M
(JM| = 3), solid circles denote shared friends SF(x, y), circles in the right dashed oval denote crossed-over
friends CRs, - s, (%), and circles in the left dashed oval denote CRs,—s; ().

Table IV. Friends Shared Across Social Networks

Property BF1Hop | BF3Hop
Average number of friends shared 1.14 .18
Average number of friends on Flickr 3.08 26.22
Average number of friends on BlogCatalog 24.89 141.41
Average % Flickr friends shared 37% 2%
Average % BlogCatalog friends shared 9% 2%
Maximum number of friends shared 32 30
Minimum number of friends shared 0 0
Standard deviation of the number of friends shared 2.30 1.09

This definition is bidirectional. Note that if users x; and x| belong to the same in-
dividual, that is, (x1, x]) € M, then the value of |CRs,_s,(x)| is not necessarily equal
to [CRs,—s,(x")]. In general, for any two users x € S; and y € Sy there could be no
relationships between the values of [CRs,_s,(®)], ICRs,—s,(¥)], and |SF(x, y)|, for ex-
ample, consider the situation where there are no shared friends but different number
of crossed-over friends. Similarly, in Figure 2, circles in the right dashed oval denote
CRs,—s,(x), and circles in the left dashed oval represent CRs,—. s, (¥). Given these formal
definitions, we present our hypothesis next.

2.4. Hypotheses Verification

‘H1: There is a correlation between the number of friends of the same individ-
ual across networks. To test this, for all the users in the mapping, we analyze the
number of friends they have in both networks. A Pearson correlation analysis revealed
that the number of friends are uncorrelated across networks for the same individual.
The correlation coefficient p was 0.038 for BF3Hop and 0.186 for BF'1Hop. For a ran-
domly generated mapping, the correlation coefficient o was 0.007 for BF3Hop and
0.019 for BF1Hop. This shows that there is no strong correlation among the number
of friends across networks for the same individual.

Hy: There is a correlation between the percentage of friends of the same
individual on each network that are shared across networks. To verify this,
we first enumerated the number of friends shared between identities of the same
individual across networks, that is, we calculated SF(x1, x2) for all (x1,x2) € M, and
for both datasets. Table IV shows some statistics about these shared friends.

As shown in this table, the average number of friends shared is at most around 1
in the datasets. Having at most one shared friend suggests that the friends that are
shared across both social networks, in the best case, can form connected components
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probability

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 8 90 100
percentage percentage

(a) Flickr to BlogCatalog (b) BlogCatalog to Flickr

Fig. 3. Target user connection probability to different fractions of crossed-over friends.

on both networks. Starting from an individual in the mapping and its two identities,
a Breadth-First-Search procedure on each network should be able to traverse many
other users in the mapping.

The table also shows, for both BlogCatalog and Flickr, the average values for the
percentage of users’ friends that were shared. The small values of these percentages
denotes that many friends on both social networks do not cross over into the other®. A
correlation analysis on these percentages across networks, when there was at least one
friend shared, showed that p ~ 0 for both datasets. Again, the value was close to the
correlation coefficient for both datasets when the mapping was randomly generated
and shows that there is no strong correlation between percentages.

Hs: The target-node is connected to the crossed-over friends of the base-node.
Here, we conjectured intuitively and based on previous evidence from the social sciences
(e.g., see Herding Behavior [Easley and Kleinberg 2010]), that when users join various
social networks, their friends also follow them and join these networks. We assume
that if one analyzes the connections of crossed-over friends, one might be able to find
the user on the target network.

For evaluating this hypothesis, for all pairs (x1,x2) € M, x1 € S1, x2 € Sg, we first
extracted all crossed-over friends of x; (CRs,-s,(x1)). Then for all members of this
set y € CRs,—s,(x1), we checked whether the target-node xy is connected to y, that is,
x9 € F(y, S2). In other words, we are trying to calculate the probability of identifying the
target-node by analyzing the connections of the crossed-over friends of the base-node.

It turns out that in both datasets, the probability of target-node x3 being connected to
all the friends of the base-node that crossed-over is always less than 5%. Furthermore,
the probability of xo being connected to at least one of the friends is still very low for both
datasets (around 45% for BF3Hop dataset at its best). Figure 3 shows the probability
of the target-node being connected to different fractions of crossed-over friends of the
base-node for the BF3Hop dataset: (a) friends crossed-over from Flickr to BlogCatalog,
and (b) from BlogCatalog to Flickr. For instance, Figure 3(b) shows that in the best
case, one has less than a 45% chance to find the target-node based on crossed-over
friends of the base-node. This is because in 55% of the cases, the target-user is not even
connected to these friends. The 45% is reduced to less than 5% in the worst case. But,

3This could also be due to the small size of the mapping in the dataset; however, when collecting the initial
set of mapping users from BlogCatalog we made sure a connected component was collected to reduce the
effect of this phenomenon.

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 2, Article 16, Publication date: October 2015.



User Identification Across Social Media 16:11

when the user is connected to these friends, is it easy to distinguish him from others
who are also connected to these friends? This brings us to our next hypothesis.

Hy: If the target-node is connected to the crossed-over friends of the base-
node, how easily can it be identified? To answer this question, we further analyzed
these crossed-over friends and ranked other users in the target network based on the
number of connections they have to them. In these ranked users, we found that in
BF1Hop and on average, the target user xy’s ranking is 19 for friends who cross-over
from BlogCatalog to Flickr and 25 in the opposite direction. These averages showed
a dramatic increase in BF3Hop and were 272 and 251, respectively. Furthermore, in
BF1Hop, xo was the top ranked user in only 23% of the cases where friends crossed
over from BlogCatalog to Flickr and 24% of the cases where the crossing over took place
in the opposite direction. These percentages dropped to 9% and 8% for the BF3Hop
dataset, respectively. Note that even if one is successful in finding that the target user
among the nodes that are connected to the crossed over friends of the base-node, it
is very unlikely to correctly identify the target user. For example, in case of friends
who crossed over from BlogCatalog to Flickr in BF3Hop, this probability is at most
45% x 9% = 4%.

The results from the hypotheses verification suggest that methods that deal with link
information can perform poorly when solving the user identification problem. Based on
the evidence that we gathered, it is very unlikely to come up with new methods that can
perform better than the present methods if only link-information is employed. While
our results clearly show that link information is not always useful, there could be cases
where link information can be utilized for user identification across sites. This has been
witnessed in recent studies where link-information has been successfully utilized to
identify individuals across sites [Tang et al. 2012b; Liu et al. 2013; Zhang et al. 2014].

In summary, our results show that counter-intuitively, link information is not suffi-
cient for identifying individuals across networks. In addition, link information might
not be always available across sites for a general solution to the problem of user iden-
tification across sites. Therefore, we consider using content information to identify
individuals.

3. BEYOND LINK INFORMATION

To use content information to identify users across social networks, we introduce a
methodology (MOBIUS) [Zafarani and Liu 2013] for finding the mapping among iden-
tities across social media sites. Our methodology is based on behavioral patterns that
users exhibit in social media, and has roots in behavioral theories in sociology and psy-
chology. Unique behaviors due to environment, personality, or even human limitations
can create redundant information across social media sites. Our methodology exploits
such redundancies for identifying users across social media sites. We use the mini-
mum amount of content information available across sites and discuss how additional
information can be added.

Let us begin by formulating our problem in terms of content information. Informa-
tion shared by users on social media sites provides a social fingerprint of them and
can help identify users across different sites. We start with the minimum amount of
information that is available on all sites. Later on, in Section 3.3, we will discuss how
one can add extra information to this minimum as it becomes available across sites. In
terms of information availability, usernames seem to be the minimum common factor
available on all social media sites. Usernames are often alphanumeric strings or email
addresses, without which users are incapable of joining sites. Usernames are unique on
each site and can help identify individuals, whereas most personal information, even
“first name + last name” combination, are nonunique. We formalize our problem using
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usernames as the atomic entities available across all sites. Other profile attributes,
such as gender, location, interests, profile pictures, language, and so on, when added to
usernames, should help better identify individuals; however, the lack of consistency in
the available information across all social media, directs us toward formulating with
usernames. When considering usernames, two general problems need to be solved for
user identification:

I. Given two usernames u; and ug, can we determine if they belong to the same
individual?
II. Given a single username « from individual Z, can we find other usernames of 77

Question II can be answered via a two-stage process: (1) we find the set of all user-
names C that are likely to belong to individual Z. We denote set C as candidate
usernames and, (2) for all candidate usernames ¢ € C, we check if ¢ and u belong to the
same individual. Therefore, if candidate usernames C are known, question II reduces
to question I. Now, where can we find these candidate usernames?

We will discuss this later in our discussion section (Section 3.3) and from now on, we
focus on question I. One can answer question I by learning an identification function

f(u,c),

(4)

fu.c) = 1 If ¢ and u belong to same Z;
“C¢) =10 Otherwise.

Without loss of generality, we can assume that username u is known to be owned by
some individual Z and c is the candidate username whose ownership by Z we would like
to verify. In other words, u is the prior information (history) provided for Z. Our function
can be generalized by assuming that our prioris a set 4 of usernames U = {u1, ug, ..., )
(hereafter referred to as “prior usernames”). Informally, the usernames of an individual
on some sites are given and we have a candidate username on another site whose
ownership we need to verify; for example, usernames u; and u; of someone are given
on Twitter and Facebook, respectively; can we verify if ¢ is her username on Flickr?

Definition (Content-Based User Identification). Given a set of n usernames (prior
usernames) U = {uy, uq, ..., u,}, owned by individual Z and a candidate username c,
a user identification procedure attempts to learn an identification function f(.) such
that

1 If ¢ and set U belong to Z;
flU.0)= { 0 Otherwise. (5)

Our methodology for MOdeling Behavior for Identifying Users across Sites
(MOBIUS)? is outlined in Figure 4. When individuals select usernames, they exhibit
certain behavioral patterns. This often leads to information redundancy, helping learn
the identification function. In MOBIUS, these redundancies can be captured in terms
of data features. Following the tradition in machine learning and data mining research,
the identification function can be learned by employing a supervised learning frame-
work that utilizes these features and prior information (labeled data), in our case, sets
of usernames with known owners. Supervised learning in MOBIUS can be performed
via either classification or regression. Depending on the learning framework, one can

4Mathematically, a set can only contain distinct values; however, here a user may use the same username
on more than one site. In our definition of username set, it is implied that usernames are distinct when used
on different sites, even though they can consist of the same character sequence.

5The resemblance to the Mébius strip comes from its single-boundary (representing a single individual) and
its connectedness (representing connected identities of the individual across social media).
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Fig. 4. MOBIUS: Modeling behavior for identifying users across sites.

even learn the probability that an individual owns the candidate username, general-
izing our binary f function to a probabilistic model (f(U, ¢) = p). This probability can
help select the most likely individual who owns the candidate username. The learn-
ing component of MOBIUS is the most straightforward. Thus, we next elaborate how
to analyze behavioral patterns related to user identification and how features can be
constructed to capture information redundancies due to these patterns. To summarize,
MOBIUS contains (1) behavioral patterns, (2) features constructed to capture infor-
mation redundancies due to these patterns, and (3) a learning framework. Given the
interdependent nature of behaviors and feature construction, we discuss them together
next.

3.1. MOBIUS: Behavioral Patterns and Feature Construction

Individuals often exhibit consistent behavioral patterns while selecting their user-
names. These patterns result in information redundancies that help identify individu-
als across social media sites.

Individuals can avoid such redundancies by selecting usernames on different sites
in a way such that they are completely different from their other usernames. In other
words, their usernames are so different that given one username, no information can be
extracted regarding the others. Theoretically, to achieve these independent usernames,
one needs to select a username with Maximum Entropy [Cover and Thomas 2006]. That
is, a long username string, as long as the site allows, with characters from those that
the system permits, with no redundancy - an entirely random string.

Unfortunately, all of these requirements are contrary to human abilities [Yan et al.
2000]. Humans have difficulty storing long sequences with short-term memory capacity
of 7+ 2 items [Miller 1956]. Human memory also has limited capability in storing ran-
dom content and often, selectively stores content that contains familiar items known
as “chunks” [Miller 1956]. Finally, human memory thrives on redundancy, and humans
can remember material that can be encoded in multiple ways [Paivio 1983]. These
limitations result in individuals selecting usernames that are generally not long, not
random, and have abundant redundancy. These properties can be captured using spe-
cific features which in turn can help learn an identification function. In this study, we
find a set of consistent behavioral patterns among individuals while selecting user-
names. These behavioral patterns can be categorized as follows:

(1) Patterns due to human limitations.
(2) Exogenous factors.
(3) Endogenous factors.

The features designed to capture information generated by these patterns can be
divided into three categories:
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(1) (Candidate) Username Features: these features are extracted directly from the
candidate username c, for example, its length,

(2) Prior-Usernames Features: these features describe the set of prior usernames
of an individual, for example, the number of observed prior usernames, and

(3) Username« Prior-Usernames Features: these features describe the rela-
tion between the candidate username and prior usernames, for example, their
similarity.

We will discuss behaviors in each of the earlier mentioned categories, and features
that can be designed to harness the information hidden in usernames as a result of
the pattern’s existence. Note that these features may or may not help in learning an
identification function. As long as these features could be obtained for learning the
identification function, they are added to our feature set. Later on, in Section 3.2, we
will analyze the effectiveness of all features, and if it is necessary to find as many
features as possible.

3.1.1. Patterns Due to Human Limitations. In general, as humans, we have (1) limited time
and memory and (2) limited knowledge. Both create biases that can affect our username
selection behavior.

(1) Limitations in Time and Memory

Selecting the Same Username. As studied recently [Zafarani and Liu 2009a],
59% of individuals prefer to use the same username(s) repeatedly, mostly for ease of
remembering. Therefore, when a candidate username c¢ is among prior usernames
U, that is a strong indication that it may be owned by the same individual who also
owns the prior usernames. As a result, we consider the number of times candidate
username c is repeated in prior usernames as a feature.

Username Length Likelihood. Similarly, users commonly have a limited set of
potential usernames from which they select one, once asked to create a new user-
name. These usernames have different lengths and, as a result, a length distribu-
tion L. Let [. be the candidate username length and /,, be the length for username
u € U (prior usernames). We believe that for any new username, it is more likely
to have

minl, <I, < maxl,; (6)
uelU uelU

For example, if an individual is inclined to select usernames of length 8 or 9, it
is unlikely for the individual to consider creating usernames with lengths longer
or shorter than that. Therefore, we consider the candidate username’s length /.
and the length distribution £ for prior usernames as features. The length distri-
bution can be compactly represented by a fixed number of features. We describe
distribution £, observed via discrete values {,},cu as a 5-tuple feature

(E[lu], oll,], med[l,], minl,, max lu>, (7
uelU ueU

where E is the mean, o is the standard deviation, and med is the median of the
values {[,},cvu, respectively. Note that this procedure for compressing distributions
as a fixed number of features can be employed for discrete distributions D, observed
via discrete values {d;}_;.

Unique Username Creation Likelihood. Users often prefer not to create new
usernames. One might be interested in the effort users are willing to put into creat-
ing new usernames. This can be approximated by the number of unique usernames
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(uniq(U)) among prior usernames U

luniq(U))

_—. 8
] (8)

uniqueness =

Uniqueness is a feature in our feature set. One can think of 1/uniqueness as an
individual’s username capacity, that is, the average number of times an individual
employs a username on different sites before deciding to create a new one.

(2) Knowledge Limitation

Limited Vocabulary. Our vocabulary is limited in any language. It is highly
likely for native speakers of a language to know more words in that language
than individuals speaking it as a second language. We assume the individual’s
vocabulary size in a language is a feature for identifying them, and as a result, we
consider the number of dictionary words that are substrings of the username as
a feature. Similar to username length feature, the number of dictionary words in
the candidate username is a scalar; however, when counting dictionary words in
prior usernames, the outcome is a distribution of numbers. We employ the technique
outlined in Equation (7) for compressing distributions to represent this distribution
as features.

Limited Alphabet. Unfortunately, it is a tedious task to consider dictionary
words in all languages, and this feature can be used for a handful of languages.
Fortunately, we observe that the alphabet letters used in the usernames are highly
dependent on language. For instance, while letter x is common when a Chinese
speaker selects a username, it is rarely used by an Arabic speaker, since no Ara-
bic word transliterated in English contains letter x [Habash et al. 2007]. So, we
consider the number of alphabet letters used as a feature, both for the candidate
username as well as prior usernames.

3.1.2. Exogenous Factors. Exogenous factors are behaviors observed due to cultural
affects or the environment that the user is living in.

Typing Patterns. One can think of keyboards as a general constraint imposed by
the environment. It has been shown [Doctorow 2012] that the layout of the keyboard
significantly impacts how random usernames are selected; for example, qwer1234 and
aoeusnth are two well-known passwords commonly selected by QWERTY and DVORAK
users, respectively. Most people use one of two well-known keyboards DVORAK and
QWERTY (or slight variants such as QWERTZ or AZERTY) [Wikipedia 2015]. To
capture keyboard-related regularities, we construct the following 15 features for each
keyboard layout (a total of 30 for both),

(1) (1 feature) The percentage of keys typed using the same hand used for the previous
key. The higher this value the less users had to change hands for typing.

(2) (1 feature) Percentage of keys typed using the same finger used for the previous
key.

(3) (8 features) The percentage of keys typed using each finger. Thumbs are not in-
cluded.

(4) (4 features) The percentage of keys pressed on rows: Top Row, Home Row, Bottom
Row, and Number Row. Space bar is not included.

(5) (1 feature) The approximate distance (in meters) traveled for typing a username.
Normal typing keys are assumed to be (1.8cm)? (including gap between keys).

We construct these features for candidate username and each prior username. Thus,
over all prior usernames, each feature has a set of values. Adopting the technique
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outlined in Equation (7) for compressing distributions as features, we construct 15x5 =
75 additional features for prior usernames.

Language Patterns. In addition to environmental factors, cultural priors such as
language also affect the username selection procedure. Users often use the same or the
same set of languages when selecting usernames. Therefore, when detecting languages
of different usernames belonging to the same individual, one expects fairly consistent
results. We consider the language of the username as a feature in our dataset. To detect
the language, we trained an n-gram statistical language detector [Dunning 1994] over
the European Parliament Proceedings Parallel Corpus®, which consists of text in 21
European languages (Bulgarian, Czech, Danish, German, Greek, English, Spanish,
Estonian, Finnish, French, Hungarian, Italian, Lithuanian, Latvian, Dutch, Polish,
Portuguese, Romanian, Slovak, Slovene, and Swedish) from 1996-2006 with more than
40 million words per language. The trained model detects the candidate username
language, which is a feature in our feature set. The language detector is also used on
prior usernames, providing us with a language distribution for prior usernames, which
again is compressed as features using Equation (7). The detected language feature is
limited to European languages. Our language detector will not detect other languages.
The language detector is also challenged when dealing with words that may not follow
the statistical patterns of a language, such as location names, and so forth. However,
these issues can be tackled from a different angle as we discuss next.

3.1.3. Endogenous Factors. Endogenous factors play a major role when individuals se-
lect usernames. Some of these factors are due to (1) personal attributes (name, age,
gender, roles and positions, and so forth) and (2) characteristics, for example, a female
selecting username fungirl09, a father selecting geekdad, or a PlayStation 3 fan se-
lecting PS31lover2009. Others are due to (3) habits such as abbreviating usernames or
adding prefixes/suffixes.

(1) Personal Attributes and Personality Traits

Personal Information. As mentioned, our language detection model is inca-
pable of detecting several languages, as well as specific names, such as locations,
or others that are of specific interest to the individual selecting the username. For
instance, the language detection model is incapable of detecting the language of
usernames Kalambo, a waterfall in Zambia, or K2 and Rakaposhi, both mountains
in Pakistan. However, the patterns in these words can be captured by analyzing
the alphabet distribution. For instance, a user selecting username Kalambo most
of the time will create an alphabet distribution where letter ‘a’ is repeated twice
more than other letters. Thus, we save the alphabet distribution of both candidate
username and prior usernames as features. This will easily capture patterns like
an excessive use of 7’ in languages such as Arabic or Tajik [Ferguson 1957; Cowan
1958], where language detection fails. Another benefit of using alphabet distribu-
tion is that not only it is language-independent, but it can also capture words that
are meaningful only to the user.

Username Randomness. As mentioned before, individuals who select totally
random usernames generate no information redundancy. One can quantify the
randomness of usernames of an individual and consider that as a feature that
can describe individuals and help identify them. For measuring randomness, we
consider the entropy [Cover and Thomas 2006] of the candidate username’s alpha-
bet distribution as a feature. We also measure entropy for each prior username. This
results in an entropy distribution that is encoded as features using aforementioned
technique in Equations (7).

8http://www.statmt.org/europarl/.
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(2) Habits

“Old habits, die hard”, and these habits have a significant effect on how usernames

are created. Common habits are
Username Modification. Individuals often select new usernames by changing

their previous usernames. Some

(a) add prefixes or suffixes

—For example, mark.brown — mark.brown2008,

(b) abbreviate their usernames

—For example, ivan.sears — isears, or
(c) change characters or add characters in between,
—For example, beth.smith — b3th.smith.

Any combination of these operations is also possible. The following approaches are

taken to capture the modifications:

—To detect added prefixes or suffixes, one can check if one username is the sub-
string of the other. Thus, we consider the length of the Longest Common Sub-
string (LCS) as an informative feature about how similar the username is to
prior usernames. We perform a pairwise computation of LCS length between the
candidate username and all prior usernames. This will generate a distribution
of LCS length values, quantized as features using Equation (7). To get values
in range [0,1], we also perform a normalized LCS (normalized by the maximum
length of the two strings) and store the distribution as a feature as well.

—For detecting abbreviations, Longest Common Subsequence length, is used since
it can detect nonconsecutive letters that match in two strings. We perform a
pairwise calculation of it between the candidate username and prior usernames
and store the distribution as features using aforementioned technique in Equa-
tion (7). We also store the normalized version as another distribution feature.

—For swapped letters and added letters, we use the normalized and unnormal-
ized versions of both Edit (Levenshtein) Distance, and Dynamic Time Warping
(DTW) [Miiller 2007] distance as measures. Again, the end results are distribu-
tions, that are saved as features.

Generating Similar Usernames. Users tend to generate similar usernames.
The similarity between usernames is sometimes hard to capture using approaches
discussed for detecting username modification. For instance, gateman and nametag
are highly similar due to one being the other spelled backward, but their similarity
is not recognized by discussed methods. Since we store the alphabet distribution
for both the candidate username and prior usernames, we can compare these using
different similarity measures. The Kullback—Liebler divergence (KL) [Cover and
Thomas 2006] is commonly the measure of choice; however, since KL isn’t a metric,
comparison among values becomes difficult. To compare distributions, we use the
Jensen—Shannon divergence (JS) [Lin 1991], which is computed from KL and is a
metric

1
JS(P|IQ) = §[KL(P||M)+KL(Q||M)]7 9

where M = (P + @), and KL divergence is

|P|

KLP|Q =) P, .zog<g). (10)
i=1 !

Here, P and @ are the alphabet distributions for candidate username and prior
usernames. As an alternative, we also consider cosine similarity between the two
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distributions as a feature. Note that JS divergence does not measure the overlap
between the alphabets. To compute alphabet overlaps, we add Jaccard Distance as
a feature.

Username Observation Likelihood. Finally, we believe the order in which
users juxtapose letters to create usernames depends on their prior knowledge.
Given this prior knowledge, we can estimate the probability of observing candidate
username. Prior knowledge can be gleaned based on how letters come after one
another in prior usernames. In statistical language modehng, the probability of
observing username u, denoted in characters as u = cica ... .cp, is

p(w) = I pleileice . .. ci1). (11)
We approximate this probability using an n-gram model
pw) ~ M pcilci—(n-1) - - - Ci—1). (12)

Commonly, to denote the beginning and the end of a word special symbols are added:
x and e. So, for username sara, the probability approximated using a 2-gram model
is

plsara) ~ p(s|x)plals)p(r|a)plalr)ple|a). (13)

To estimate the observation probability of the candidate username using an n-
gram model, we first need to compute the probability of observing its comprising
n-grams. The probability of observing these n-grams can be computed using prior
usernames. These probabilities are often hard to estimate, since some letters never
occur after others in prior usernames while appearing in the candidate username.
For instance, for candidate username test12 and prior usernames {test, testing},
the probability of p(1| x test) = 0 and therefore p(test12) = 0, which seems unrea-
sonable. To estimate probabilities of unobserved n-grams, a smoothing technique
can be used. We use the state-of-the-art Modified Kneser—-Ney (MKN) smoothing
technique [Chen and Goodman 1996], which has discount parameters for n-grams
observed once, twice, and three times or more. The discounted values are then
distributed among unobserved n-grams. The model has demonstrated excellent
performance in various domains [Chen and Goodman 1996]. We include the can-
didate username observation probability, estimated by an MKN-smoothed 6-gram
model, as a feature.

We have demonstrated how behavioral patterns can be translated to meaningful
features for the task of user identification. These features are constructed to mine in-
formation hidden in usernames due to individual behaviors when creating usernames.
Overall, we construct 414 features for the candidate username and prior usernames.
Figure 5 depicts a summary of these behavioral patterns observed in individuals when
selecting usernames.

Clearly, our features do not cover all aspects of username creation, and with more
theories and behaviors in place, more features can be constructed. We will empirically
study if it is necessary to use all features and the effect of adding more features on
learning performance of user identification.

Following MOBIUS methodology, the feature values are computed over labeled data,
and the effectiveness of MOBIUS is verified by learning an identification function.
Next, experiments for evaluating MOBIUS are detailed.

3.2. Experiments

The MOBIUS methodology is systematically evaluated in this section. First, we ver-
ify if MOBIUS can learn an accurate identification function, comparing with some
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Fig. 5. Individual behavioral patterns when selecting usernames.

baselines. Second, we examine if different learning algorithms make significant dif-
ference in learning performance using acquired features. Then, we perform feature
importance analysis, and investigate how the number of usernames and the number
of features impact learning performance. Before we present our experiments, we detail
how experimental data is collected.

3.2.1. Data Preparation. A simple method for gathering identities across social networks
is to conduct surveys and ask users to provide their usernames across social networks.
This method can be expensive in terms of resource consumption, and the amount of
gathered data is often limited. Companies such as Yahoo! or Facebook ask users to
provide this kind of information”; however, this information is not publicly available.

Another method for identifying usernames across sites is by finding users manually.
Users, more often than not provide personal information such as their real names,
E-mail addresses, location, gender, profile photos, and age on these websites. This
information can be employed to map users on different sites to the same individual.
However, manually finding users on sites can be quite challenging.

Fortunately, there exist websites where users have the opportunity of listing their
identities (user accounts) on different sites. This can be thought of as labeled data for
our learning task, providing a mapping between identities. In particular, we find social
networking sites, blogging and blog advertisement portals, and forums to be valuable
sources for collecting multiple identities of the same user.

Social Networking Sites. On most social networking sites such as Google+ or
Facebook, users can list their IDs on other sites. This provides usernames of the same
individual on different sites.

Blogging and Blog Advertisement Portals: To advertise their blogs, individuals
often join blog cataloging sites to list not only blogs, but also their profiles on other
sites. For instance, users in BlogCatalog are provided with a feature called “My Com-
munities”. This feature allows users to list their usernames in other social media sites.

Forums: Many forums use generic Content Management Systems (CMS), designed
specifically for creating forums. These applications usually allow users to add their
usernames on social media sites to their profiles. Examples of these applications that
contain this feature include, but are not limited to: vBulletin, phpBB, and Phorum.

"http://mashable.com/2010/10/17/y-connect-yahoo/.
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Table V. MOBIUS Performance Compared to Content-Based
Methods and Baselines

Technique Accuracy
MOBIUS (Naive Bayes) 91.38%
Method of Zafarani et al. [Zafarani and Liu 2009a] 66.00%
Method of Perito et al. [Perito et al. 2011] 77.59%
Baseline b1: Exact Username Match 77.00%
Baseline by: Substring Matching 63.12%
Baseline b3: Patterns in Letters 49.25%

We utilize these sources for collecting usernames, guaranteed to belong to the same
individual. Overall, 100,179 (¢-U) pairs are collected, where ¢ is a username and U is
the set of prior usernames. Both ¢ and U belong to the same individual. The dataset
contains usernames from 32 sites such as: Flickr, Reddit, StumbleUpon, and YouTube.
This dataset contains all the usernames (nodes) collected in Section 2.2.1 as well as
additional usernames to make our results comparable.

The collected pairs are considered as positive instances in our dataset. For negative
instances, we construct instances by randomly creating pairs (c;-U;) such that ¢; is
from one positive instance and U, is from a different positive instance (i # j) to
guarantee that they are not from the same individual. We generated different numbers
of negative instances (up to 1 million instances), but its effect on the accuracy of
learning the identification function was negligible. By further investigation we noticed
that this phenomenon takes placed due to feature values for negative instances being
far different from that of positive instances. Thus, we continue with a dataset where
the class balance is 50% for each label (100,179 positive + 100,179 negative ~200,000
instances). Then, we compute our 414 feature values for this data and employ this
dataset for our learning framework.

3.2.2. Learning the Identification Function. To evaluate MOBIUS, the first step is to verify
if it can learn an accurate identification function. Given our labeled dataset where
all feature values are calculated, learning the identification function can be realized
by performing supervised learning on our dataset. We mentioned earlier that a prob-
abilistic classifier can generalize our binary identification function to a probabilistic
one, where the probability of a candidate username belonging to an individual is mea-
sured. Probabilistic classification can be achieved by a variety of Bayesian approaches.
We select Naive Bayes. Naive Bayes, using 10-fold cross validation, correctly classifies
91.38% of our data instances.

There is a need to compare MOBIUS performance to other content- and link-based
methods. To the best of our knowledge, methods from Zafarani and Liu [2009a] and
Perito et al. [2011] are the only content-based methods that tackle the same prob-
lem with usernames. The ad hoc method of Zafarani et al. employs two features: 1)
exact match between usernames and 2) substring match between usernames. Perito
et al’s method uses a single feature. This feature, similar to our username-observation
likelihood, utilizes a 5-gram model to compute the username observation probability.
Table V reports the performance of these techniques over our datasets. Our method
outperforms the method of Zafarani et al. by 38% and the method of Perito et al. by
18%. The key difference between MOBIUS and the methods in comparison is that MO-
BIUS takes a behavioral modeling approach that systematically generates features for
effective user identification.

To evaluate the effectiveness of MOBIUS, we also devise three content-based baseline
methods for comparison. When people are asked to match usernames of individuals,
commonly used methods are “exact username matching”, “substring matching”, or
finding “patterns in letters”. Thus, they form our three baselines b, bs, and b3:
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Table VI. MOBIUS Performance Compared
to Link-Based Reference Points

Technique AUC
MOBIUS (Naive Bayes) 0.937
Reference Point 1: Common Neighbors  0.504
Reference Point 1: Jaccard Coefficient 0.503
Reference Point 1: Adamic/Adar 0.501

Table VII. MOBIUS Performance for Different
Classification Techniques

Technique AUC  Accuracy
J48 Decision Tree Learning 0.894 90.87%
Naive Bayes 0.937 91.38%
Random Forest 0.957 93.59%
£9-Regularized ¢o-Loss SVM 0.950 93.70%
£1-Regularized ¢5-Loss SVM 0.951 93.71%

£9-Regularized Logistic Regression  0.950 93.77%
¢1-Regularized Logistic Regression  0.951 93.80%

b;: Exact Username Match. It considers an instance positive if the candidate user-
name is an exact match to a% of the prior usernames. To set o accurately, we computed
the percentage of prior usernames that are exact matches to the candidate username
in each of our positive instances and averaged it over all positive instances to get «,
a ~ 54%. To further analyze the impact, we set 50% < o < 100%. Among all o values,
b1 does not perform better than 77%.

by: Substring Matching. It considers an instance positive if the mean of the candidate
username’s normalized longest common substring distance to prior usernames is below
some threshold 0. We conduct the experiment for the range 0 < 6 < 1. In the best case,
b achieves 63.12% accuracy.

b3: Patterns in Letters. For finding letter patterns, b3 uses the alphabet distribution
for the candidate username and the prior usernames as features. Using our data labels,
we perform logistic regression. bs achieves 49.25% accuracy.

Our proposed technique outperforms baseline b1, bo, and bs by 19%, 45%, and 86%,
respectively. The performance for MOBIUS trained by Naive Bayes, other content-
based methods, and baselines are summarized in Table V.

To evaluate MOBIUS against link-based methods, we compare it to well-known un-
supervised link prediction methods. As MOBIUS does not use link information, the
performance of link-based methods only serve as reference points and no improvement
will be reported. The methods included as reference points are Common Neighbors,
Jaccard Coefficient, and Adamic/Adar [Liben-Nowell and Kleinberg 2007]8. Compar-
ison between MOBIUS and the link-based reference points are provided in Table VI.
Now, we would like to see if different learning algorithms can further improve the
learning performance.

3.2.3. Choice of Learning Algorithm. To evaluate the choice of learning algorithm, we
perform the classification task using a range of learning techniques and 10-fold cross
validation. The AUCs and accuracy rates are available in Table VII. These techniques
have different learning biases, and one expects to observe different performances for
the same task. As seen in the table, results are not significantly different among

8As our dataset lacks link information, we report the best performances obtained across networks us-
ing [Zhang et al. 2014]
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Table VIII. MOBIUS Performance for Different Behaviors

Set of Features Accuracy
I. Human Limitations 87.70
-Limitations in Time and Memory 87.70
—Selecting the Same Username 52.42
—Username Length Likelihood 55.88
—Username Creation Likelihood 60.81
-Knowledge Limitations 51.17
—Limited Vocabulary 51.24
—Limited Alphabet 48.55
II. Exogenous Factors 57.37
-Typing Patterns 57.43
-Language Patterns 51.40
II1. Endogenous Factors 93.78
-Personal Information 49.25
-Username Randomness 56.00
-Habits 93.65
—Username Modification 93.64
—Generating Similar Usernames 78.37

—Username Observation Likelihood 48.54

these methods. This shows that when sufficient information is available in features,
the user identification task becomes reasonably accurate and is not sensitive to the
choice of learning algorithm. In our experiments, ¢1-Regularized Logistic Regression is
shown to be the most accurate method and thus we use it in the following experiments
as the method of choice. The classification employs all 414 features. Designing 414
features and computing their values is computationally expensive. Therefore, we try to
empirically determine: 1) whether all features are necessary, and 2) whether it makes
economic sense to add more features, in Sections 3.2.4 and 3.2.5.

3.2.4. Feature Importance Analysis. Feature Importance Analysis analyzes how impor-
tant different features are in learning the identification function. First, for each be-
havior we have identified, we group the respective features and measure their impact
on the classification task. That is we only use those features in MOBIUS for classifi-
cation. We previously provided the hierarchy of these behaviors in Figure 5. For each
node in this hierarchy (other than the root), we create a feature set and train MO-
BIUS using only those features. Table VIII provides the performance of MOBIUS with
these feature sets. As shown in the Table, features that describe endogenous factors
or human limitations are the most effective for user identification. In terms of human
limitations, features that capture limitations in time and memory are most suitable
for user identification. Similarly, features that capture typing patterns and habits are
most suitable from exogenous and endogenous factors, respectively. Finally, the most
effective features for user identification are those that capture users’ habits.

This analysis does not show individual features that contribute the most to the
classification task. Next, we find these individual features. This can be performed by
standard feature selection measures such as Information Gain, x2, among others. We
utilize odds-ratios (logistic regression coefficients) for feature importance analysis and
ranking features. The top 10 important features are as follows:

(1) Standard deviation of normalized edit distance between the candidate username
and prior usernames,

(2) Standard deviation of normalized longest common substring between the user-
name and prior usernames,

(3) Username observation likelihood,
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Fig. 6. User identification performance for users with different number of usernames.

(4) Uniqueness of prior usernames,

(5) Exact match: number of times candidate username is seen among prior user-
names,

(6) Jaccard similarity between the alphabet distribution of the candidate username
and prior usernames,

(7) Standard deviation of the distance traveled when typing prior usernames using
the QWERTY keyboard,

(8) Distance traveled when typing the candidate username using the QWERTY key-
board,

(9) Standard deviation of the longest common substring between the username and
prior usernames, and

(10) Median of the longest common subsequence between the candidate username and

prior usernames.

In fact, a classification using only these 10 features and logistic regression provides
an accuracy of 92.72%, which is very close to that of using the entire feature set. We
also notice that in our ranked features,

—Numbers [0-9] are on average ranked higher than English alphabet letters [a-z],
showing that numbers in usernames help better identifyAindividuals, and

—Non-English alphabet letters or special characters, e.g., A,A,+, or &, are among the
features that could easily help identify individuals across sites, that is, have higher
odds-ratios on average.

Although these 10 features perform reasonably well, it is of practical importance to
analyze how we can further improve the performance of our methodology in different
scenarios, such as by adding usernames or features.

3.2.5. Diminishing Returns for Adding More Usernames and More Features. It is often assumed
that when more prior usernames of an individual are known, the task of identifying
the individual becomes easier. If true, to improve identification performance, we need
to provide MOBIUS with extra prior information (known usernames). In our dataset,
users have from one to a maximum of 30 prior usernames. To verify helpfulness of
adding prior usernames, we partition the dataset into 30 datasets {d;}?°,, where dataset
d; contains individuals that have i prior usernames. The user identification accuracy on
these 30 datasets are shown in Figure 6. We observe a monotonically increasing trend
in identification performance, and even for a single prior username, the identification is
90.72% accurate and approaches 100% when 25 or more usernames are available. Note
that the identification task is hardest when only a single prior username is available.

Rarely are 25 prior usernames of an individual available across sites. It is more
practical to know the minimum number of usernames required for user identification
such that further improvements are nominal. The relative performance improvement
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Fig. 8. Relative change in number of features required with respect to number of usernames.

with respect to number of usernames can help us measure this minimum. Figure 7
shows this improvement for adding usernames. We observe a diminishing return prop-
erty, where the improvement becomes marginal as we add usernames and is negligible
for more than seven usernames. A power function (g(x) = 2.44x~17?), found with 95%
confidence, fits to this curve with adjusted R? = 0.976. The exponent —1.79 denotes
that the relative improvement by adding n usersnames is ~1/n!"" times smaller than
that by adding a single username, example, for seven usernames, relative identification
performance improvement is ~1/33 times smaller than that of a single username.

Similar to adding more prior usernames, one can change number of features. More
practically, we would like to analyze how adding features correlates with adding prior
usernames. For instance, if we double the number of prior usernames, how many
features should we construct (or can be removed) to guarantee reaching a required
performance?

To measure this, for each number of prior usernames n, we compute the average
number of features such that MOBIUS can achieve fixed accuracy 6. We set 6 to the
minimum accuracy achievable, independent of number of usernames (90% here). Then
we compute the relative change in the number of required features when usernames
are added.

Figure 8 plots this relationship. We observe the same diminishing return property,
and as one adds more usernames, fewer features are required to achieve a fixed accu-
racy. A power function (g(x) = 0.1359x~9875), found with 95% confidence, fits to this
curve with adjusted R? = 0.987. The exponent —0.875 denotes that the number of
features required for n usersnames is ~ 1/n%87 times smaller than that of a single
username.

Finally, if one is left with a set of usernames and a set of features, should we aim at
adding more usernames or construct better features? Let f(n, k) denote the performance
of our method for n usernames and % features. Let,

fn+1,k) — f(n,k)
fnk+1)— f(n, k)’

S8(n, k) = (14)
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Fig.9. The §(n, k) function, for n usernames and % features. Values larger than 1 show that adding usernames
will improve performance more and values smaller than 1 show adding features is better.

The § function is a finite difference approximation for the derivative ratio with respect
to n and k. When 6(n, k) > 1, adding usernames improves performance more and when
8(n, k) < 1, adding features is better. To compute f(n, k), for different values of n, we
select random subsets of size k. We denote the average performance over these random
subsets as f(n, k). Figure 9 plots the §(n, k) function. We plot plane z = 1 to better show
where adding features is more helpful and where usernames are more beneficial. We
observe that for small values of n and &, that is, when fewer usernames and features
are available, features help best, but for all other cases adding usernames is more
beneficial.

3.3. Discussion

We demonstrated that MOBIUS can exploit information redundancies due to user
behaviors to identify individuals across sites. The empirical evaluation shows that
MOBIUS is effective in across-site user identification.

Back to our initial questions, although we can tell if a username belongs to a user-
name set, but given a username-set, where can we find the candidate usernames?
Furthermore, as MOBIUS operates on usernames, a natural question is if there is
additional information available such as location, how we can represent and integrate
it into MOBIUS. These are practical questions that need to be answered to complete
the task of identification

3.3.1. Finding Candidate Usernames. The candidate username needs to be found using
the available tools and information. To most users, unless they have access to the deep
or hidden web, the only gateway to find information is the public web and in particular,
with tools such as web search engines; therefore, we focus on finding usernames on
the public web via web search engines. In our experiments, we had several interesting
observations that can lead to finding candidate usernames.

We found that for any two usernames, u; and uy of the same individual, there is a
high chance of co-occurrence of these two in search engine results. To verify this, from
our dataset we generated around 100,000 username-username pairs < uj, ug > where
both u; and uy belonged to the same individual. We found using Google with query “u,
u,” that usernames co-occur in nearly 68% of the cases in web search engine results.
This finding suggests that we can perform a web search using one of the usernames
and then perform keyword extraction on the retrieved webpages to discover the other
usernames; however, though sufficiently accurate, in some cases, the retrieved pages
are many and long and keyword extraction can be quite tedious and will generate
many candidate usernames. Our other observations lead to a solution to mitigate this
problem. We will review them first before coming back to a solution to this problem.
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Table IX. Profile URLs for Popular Social Media Sites

Site Profile URL Pattern
YouTube http://www.youtube.com/test
Flickr http://www.flickr.com/photos/test
Reddit http://www.reddit.com/user/test
Del.icio.us | http://del.icio.us/test

We observed that for any social media site s and for all its usernames, there exists
URLs on the Registered Domain Name of s that contain the username. These URLs
are most commonly pointing to the profile/lhomepage of the users on that site. Denote
these URLs as Profile URLs. As an example, consider how the profile page URLs of a
fictional user test can be reached on some of the most popular social networking sites
in Table IX. We have analyzed 32 online sites in our dataset and surprisingly, in all 32,
the site’s profile URLs contains the username.

Back to our original problem, interestingly, users often list their other usernames
on Profile URLs. For instance, on their profile pages, they list their email addresses,
where its part before the @ sign, is a commonly employed username of the individual.
In other words, for two usernames u; and ug of the same individual, it is sufficiently
likely for u; to exist in the URL of the webpages retrieved using popular search engines,
such that the page itself contains us, that is, u; profile page contains us.

To verify this, we used our 100,000 username-username pairs and for each pair
< ui,us >, two separate queries were sent to Google (first username occurring on
second username’s profile, and vice versa). In Google, the queries can be formulated
in the following format: “inurl:u; us” and “inurl:us u;”. This phenomenon holds in
nearly 38% of the situations. Likewise our previous observation, this suggests that
we can perform a web search using one of the usernames and then perform keyword
extraction on the URLs of the webpages retrieved to discover other usernames.

3.3.2. Adding More Information. MOBIUS can use other types of information that is avail-
able on social media sites. In general, we can follow the following procedure to integrate
new types of information: (1) determine the behavioral patterns that humans exhibit
regarding that information, and (2) construct features to capture information redun-
dancies due to behavioral patterns. For example, we have information beyond username
such as individual’s location that is often available on profile pages. Corresponding to
candidate username (c) and prior usernames (U ), we have candidate location and prior
locations. One behavioral pattern associated with location is that individuals rarely
change their locations. In fact, locations change much less than usernames. Therefore,
based on this behavioral pattern, we can have an exact location match feature that
counts the number of times candidate location is observed among prior locations. One
can design additional features to capture similarity between candidate location and
prior locations. For example, APIs such as the Google Maps API can be used to convert
locations to latitude-longitude pairs and then distances between locations can be used
to measure similarity.

As the availability of different types of information varies, such information is not
as universally available as usernames. However, we believe more information should
help identify users better and further investigation is needed to analyze performance
gains due to additional information.

4. RELATED WORK

In this section, we focus on summarizing research related to identifying individuals
in social media. We provided a review of directly relevant techniques to our study in
Section 3.2. In addition to those, the methods of Iofciu et al. [2011] and Liu et al.
[2013] approach the same problem but with extra information. Iofciu et al. utilize tag
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information in addition to a single username feature and Liu et al. use profile metadata,
friendship network information, and content based features. Both methods rely on the
availability of information that may not be available on social media. Our method only
uses username information across sites.

In addition to these methods, there exists related research about (1) identifying
content produced by an individual on the web or (2) identifying individuals in a single
social network.

Identifying Content Authorship. In Amitay et al. [2007], the authors look at
the content generation behavior of the same individuals in several collections of docu-
ments. Based on the overlap between contributions, they propose a method for detecting
pages created by the same individual across different collections of documents. They
use a method called detection by compression, where Normalized Compression Dis-
tance (NCD) [Cilibrasi and Vitanyi 2005] is used to compare the similarity between
the documents already known to be authored by the individual and other documents.
Author detection has been well discussed in restricted domains. In particular, machine
learning and data mining techniques have been employed to detect authors in online
messages [Zheng et al. 2006], online message boards [Novak et al. 2004; Abbasi and
Chen 2005], blogs [Keogh et al. 2004], and in E-mails [De Vel et al. 2001]. Although, one
can think of usernames as the content generated by individuals across sites; however,
in content authorship detection, it is common to assume large collections of documents,
with thousands of words, available for each user, whereas for usernames, the informa-
tion available is limited to one word.

User Identification on One Site. Deanonymization? is an avenue of research
related to identifying individuals on a single site. Social networks are commonly rep-
resented using graphs where nodes are the users and edges are the connections. To
preserve privacy, an anonymization process replaces these users with meaningless,
randomly generated, unique IDs. To identify these masked users, a deanonymization
technique is performed. Deanonymization of social networks is tightly coupled with
the research in privacy preserving data mining [Agrawal and Srikant 2000] or Identity
Theft attacks [Bilge et al. 2009]. In Backstrom et al. [2007], theypresent such process
where one can identify individuals in these anonymized networks by either manipulat-
ing networks before they are anonymized or by having a priori knowledge about certain
anonymized nodes. Narayanan and Shmatikov [2008] present statistical deanonymiza-
tion technique against high-dimensional data. They argue that given little information
about an individual one can easily identify the individual’s record in the dataset. They
demonstrate the performance of their method by uncovering some users on the Netflix
prize dataset using IMDB information as their source for background knowledge. Our
work differs from these techniques as it deals with multiple sites. Moreover, it avoids
using link information, which is not always available on different social media sites.

5. CONCLUSIONS AND FUTURE WORK

In this article, we have provided empirical evidence on the existence of a mapping
between identities of individuals across the social media sites and studied the possi-
bility of identifying users across sites. Both link and content information were used to
identify individuals. In the link section, we found that when an individual is present
on both networks, there are not relationships between the number of friends that the
individual has on each network. It was also shown that when the same individual had
some friends shared across the two networks, no correlations were observed regarding
what percentage of friends on each network were shared. Furthermore, we found that

9Deanonymization is tightly coupled with the research in privacy preserving data mining (see [Agrawal and
Srikant 2000; Agrawal and Aggarwal 2001; Dinur and Nissim 2003; Evfimievski et al. 2003; Aggarwal and
Yu 2008])
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the target-node is not very likely to be connected to the crossed-over friends of the base-
node, and even in the cases that it is found to be connected, it is challenging to identify
it among all connected nodes. These findings and evaluation results of the proposed
method show that counter-intuitively, link information is not sufficient to identify indi-
viduals across social media sites. However, content information and in particular user-
names can be used quite successfully to identify corresponding usernames on various
sites. We demonstrated a content-based methodology for connecting individuals across
social media sites (MOBIUS). MOBIUS takes a behavioral modeling approach for sys-
tematic feature construction and assessment, which allows integration of additional
features when required. MOBIUS employs minimal content information available on
all social media sites (usernames) to derive a large number of features that can be used
by supervised learning to effectively connect users across sites. Users often exhibit cer-
tain behavioral patterns when selecting usernames. The proposed behavioral modeling
approach exploits information redundancy due to these behavioral patterns. We cate-
gorize these behavioral patterns into (1) human limitations, (2) exogenous factors, and
(3) endogenous factors. In each category of behaviors, various features are constructed
to capture information redundancy. MOBIUS employs supervised learning to connect
users. Our empirical results show the advantages of this principled, behavioral model-
ing approach over earlier methods. The experiments demonstrate that (1) constructed
features contain sufficient information for user identification; (2) importance or rele-
vance of features can be assessed, thus features can be selected based on particular
application needs; and (3) adding more features can further improve learning perfor-
mance but with diminishing returns, hence, facing a limited budget, one can make
informed decisions on what additional features should be added.

Research issues in this work can be further investigated. As for using link informa-
tion, we can analyze the likelihood of a target user being connected to friends of the
crossed-over friends. As for using content information, future work includes discover-
ing features indigenous to specific sites but beyond those constricted to usernames,
and incorporating them into MOBIUS for future needs. Furthermore, hybrid link- and
content-based methods are expected to improve the performance of user identification.
In addition to improving this user identification accuracy, the behavioral modeling ap-
proach of MOBIUS can be used in different domains in social media research. Recently,
Rajadesingan et al. showed that this approach is useful for sarcasm detection in social
media [Rajadesingan et al. 2015].

Identifying users across social media sites opens the door to many interesting ap-
plications. For instance, MOBIUS can help solve problems such as recommending
friends and advertising across different networks, analyzing user patterns across them
[Zafarani and Liu 2014], and studying user behavior such as migration across social
media sites [Kumar et al. 2011].
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