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ABSTRACT
Understanding the role emotions play in social interactions has

been a central research question in the social sciences. However,

the challenge of obtaining large-scale data on human emotions

has left the most fundamental questions on emotions less explored:

How do emotions vary across individuals, evolve over time, and

are connected to social ties?

We address these questions using a large-scale dataset of users

that contains both their emotions and social ties. Using this dataset,

we identify patterns of human emotions on five different network

levels, starting from the user-level and moving up to the whole-

network level. At the user-level, we identify how human emotions

are distributed and vary over time. At the ego-network level, we find

that assortativity is only observed with respect to positive moods.

This observation allows us to introduce emotional balance, the “dual”
of structural balance theory. We show that emotional balance has a

natural connection to structural balance theory. At the community-

level, we find that community members are emotionally-similar and

that this similarity is stronger in smaller communities. Structural

properties of communities, such as their sparseness or isolatedness,

are also connected to the emotions of their members. At the whole-

network level, we show that there is a tight connection between the

global structure of a network and the emotions of its members. As a

result, we demonstrate how one can accurately predict the propor-

tion of positive/negative users within a network by only looking

at the network structure. Based on our observations, we propose

the Emotional-Tie model – a network model that can simulate the

formation of friendships based on emotions. This model generates

graphs that exhibit both patterns of human emotions identified in

this work and those observed in real-world social networks, such

as having a high clustering coefficient. Our findings can help better

understand the interplay between emotions and social ties.
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1 INTRODUCTION
Social media has become the primary online venue for users to

express their emotions. Emotions are shared via posts, comments,

photos, tweets, likes, among other interactions. Emotions expressed

by users are tightly coupled with their social relationships [31].

Social relationships are one of the strongest forces behind the for-

mation of emotions; in return, emotions are known to regulate

social life [31]. On most social media sites, users develop social

relationships by befriending or following others, interacting with

them, or forming small communities or joining larger ones. The

abundance of emotion-carrying data and social relationships on

social media facilitates the study of human emotions (1) across

users, (2) over time, and (3) with respect to social ties. The findings

of such a study have various implications:

Implications of Studying Emotion. Findings on how emotions

are linked with social ties can be harnessed for emotion prediction.

Traditionally, emotion prediction and sentiment analysis models

have utilized textual data to predict emotions [18]. By identifying

the connections between emotions and social ties, one can take an

alternative route to emotion prediction by using social network

information. Furthermore, studying emotions with respect to social

ties can help answer questions such as: how correlated are my

emotions to that of my friends [6]? are emotions linked to the

structure of social networks? are happy users friends with other

happy users (i.e., indicating assortative mixing [21])? or are sad

users more likely to be found in sparse, or dense communities?

Studying emotions across social media users can also help better

understand the types of emotions that are expressed online. For

instance, one can investgiate whether social media is mostly used

to share joy, or to vent frustration. Moreover, links between various

user activities and emotions can be identified, e.g., is extensive social

media usage correlated to negative emotions and depression [27]?

Pursuing a systematic study on how emotions are connected to

social networks is challenging. The difficulty in conducting such

a study lies in obtaining large-scale longitudinal data on users,

containing both their social networks and emotions, where emo-

tions are directly provided and not subjectively predicted (e.g., by

sentiment classification [18]).

The Present Work. In this paper, using a large-scale longitudinal

network of users and their emotions, we aim to identify patterns of

emotions. Our goal is to study how emotions (1) vary across users,

(2) evolve over time, and (3) are connected to social ties. Based on

the identified patterns, we aim to propose a network model that

can properly simulate friendship formations based on emotions.

To study emotions systematically, we analyze emotions on five

different levels and make the following contributions:
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I. User-Level Analysis (Section 3). At the most basic network

level, we study users and their emotions. We identify (1) emotions

that users express more, (2) how emotions are distributed across

users (Section 3.1), and (3) how emotions vary over time or with

increased activity (Section 3.2).

II. Ego-Level Analysis (Section 4). At the ego-level, we identify

directed and undirected relationships that are formed between users

depending on their emotions. We also study whether the emotions

of one’s friends are correlated to her future emotions.

III. Triads and Emotional Balance (Section 5). A natural exten-

sion to the ego-level analysis (i.e., two users) is to study emotions

in sets of three connected users (a triad). We identify configurations

of triads that are more common in social networks depending on

the emotions expressed by their three members. Studying emotions

in triads naturally connects this study to structural balance theory,
which studies triads with friendly/antagonistic relationships, i.e.,

signed edges. We introduce emotional balance, which looks at tri-

ads of users with different emotions (signed nodes). We show that

structural balance theory and emotional balance are connected.

IV. Community-Level Analysis (Section 6). We identify situa-

tions in which community members exhibit similar emotions. We

investigate whether (1) such similarities are stronger in smaller

communities and whether (2) structural properties of a commu-

nity (e.g., its sparsity or isolatedness) are related to the emotions

expressed by its members.

V. Network-Level Analysis (Section 7). Finally, we analyze user

emotions at the whole network-level. We find that users exhibit

distinct network-level patterns based on their emotions. Exploiting

such patterns, we show that one can accurately predict the emotion

that is dominant in the network using only the graph information.

The findings at different network levels allow us to study the

relationship between friendship formations and user emotions. By

modeling tie strength as a function of user emotions, we propose the

Emotional-Tie model – a network model that can properly simulate

friendship formations based on emotions. In Section 8, we will

discuss this model along with its properties and limitations.

Before we delve into the details, we discuss our experimental

setup and how data was prepared for our experiments next.

2 EXPERIMENTAL SETUP
To understand emotions at different network levels and over time,

proper data is required. This data should have users and their emo-

tions at different times. Such emotions can be directly provided by

the users or can be indirectly obtained via sentiment classification

on the content users generate (e.g., posts) [24]. As sentiment classi-

fication can be subjective and imprecise [18], it is preferable that

emotion data is provided directly. The dataset should also contain

directed and undirected relationships such as friendships between

users and follower/followee relationships. Finally, for community-

level analysis, community membership information is required.

Community membership information can be provided directly or

can be obtained using a community detection algorithm. Explicit

community membership information is preferred as community de-

tection can be subjective [7] and imprecise community membership

information may impact our experimental outcomes. The LiveJour-

nal website (http://www.livejournal.com/) provides data satisfying

all of the above constraints and is an appropriate candidate for data

collection for our experiments.

LiveJournal is a popular blogging and social networking site,

where users can maintain a blog, journal, or a diary. When posting

blogs, users have the option of reporting their emotion by selecting

amood. This mood can be selected from a predefined list of 132 com-

mon moods such as happy or angry, or can be entered as free-text,

e.g., :-))). The mood list is sorted alphabetically and no mood is

preselected (i.e., no default mood). LiveJournal social network has

both directed and undirected user-user relationships. Users on Live-

Journal can be (1) friends (undirected/mutual relationship) or can

have (2) follower or following relationship (directed relationship).

LiveJournal has explicit communities. Users can choose to create

or join a community. The site enables one to study emotions, how

emotions evolve over time, and how emotions vary with respect to

social network structure.

We have crawled LiveJournal using a BFS crawler starting from

central nodes in the largest connected component. We collect more

than 14.7 million posts, spanning more than 10 years of LiveJournal

data. Each post is assigned a mood by the user publishing it. In

addition, we collect around 1.13 million friendships (undirected),

14.1 million followers/followees (directed), and community mem-

berships for all users. Our dataset is released for research purposes.
1

Data Limitations. Unfortunately, LiveJournal does not provide
timestamps on when social ties are formed or when users join

communities. Given such timestamps, this work could be naturally

extended to consider the causality (or pseudo-causality) relation-

ships between emotions and social ties.

Data Preprocessing. We perform a set of preprocessing steps on

the dataset. In particular, for consistency in sentiment analysis and

removing meme-type moods, we only retain the posts that have

their moods selected from the predefined list provided by LiveJour-

nal. These posts account for the majority of posts in the dataset

(85.96%). In addition, we only retain users that have 10 or more

posts to exclude occasionally active or inactive users. Finally, we

manually convert each mood in our dataset to its polarity (positive,

negative, or neutral). After this step, all moods in our datasets are

either positive (+), negative (−), or neutral (0).

Following data preparation, we conduct the following analyses.

3 USER-LEVEL ANALYSIS
We begin by analyzing user-level emotions. In particular, we look

at the (1) distribution of users with positive or negative emotions

and the (2) longitudinal dynamics of emotions.

3.1 Distribution of Emotion
First, we need to determine how positive or negative a user is in

general. We use the previously proposed Subjective Well-Being

(SWB) [3] to achieve this goal. Let S(u) denote the subjective well-
being of user u. Subjective well-being is defined as the fractional

difference between the number of positive and negative posts:

S(u) =
Np (u) − Nn (u)

Np (u) + Nn (u)
, (1)

1
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Figure 1: User Emotion Distribution

Table 1: Distribution of Positive, Negative, andNeutral Users

Users Number Proportion
Positive (+) 50,705 43.92%

Negative (−) 61,066 52.90%

Neutral (0) 3,673 3.18%

Total 115,444 100.00%

where Np (u) and Nn (u) represent the number of positive and nega-

tive posts for user u, respectively. Figure 1a plots the distribution of

S(u) values for all users. The distribution exhibits a spike at S(u) = 0

(users that have equal number of positive and negative posts). The

distribution is approximately normal, as can be observed by the

normal fit in the figure. However, the empirical Cumulative Distri-

bution Function (CDF) of the S(u) values (Figure 1b) reveals a slight
skew towards users withmore negative posts, i.e., P(S(u) < 0) > 0.5.

Thus, we consider users with S(u) > 0 as positive (+), with S(u) < 0

as negative (−), and with S(u) = 0 as neutral (0) individuals.

Table 1 provides the distribution of positive, negative, and neutral

users. The majority of users express negative emotions most of the

time and negative users are almost 20% more than positive users.

Neutral users account for 3% of the population.

Observing more negative users in social networks is in line with

findings on negativity bias in psychology literature, indicating that

humans are more likely to respond to negative events [2, 26, 29]. It

also confirms recent discoveries indicating that (1) negative posts

are expected to receive more feedback [28] and that (2) social media

is used to vent negative emotions and frustrations [25].

3.2 Longitudinal Dynamics
Do users get sadder or happier over time? Does more activity on

social media lead to sadness? To answer such questions, we inves-

tigate how emotions change (1) over time and (2) with increased

activity. Figure 2a shows the average SWB versus the number of
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Figure 2: Emotion Change with Time or Activity

active days for users that have been active for up to 10 years on

the site. The average SWB decreases until around 200 days and

stays stable between 200 to 3,000 days. After that, the SWB value

increases again. To summarize, (1) users who leave the site in a

short time tend to leave positive posts; (2) Users that are very loyal

to the site —who are active over 3,000 days — are also more positive;

and (3) the remaining users maintain a slightly negative emotion.

Similarly, to determine how emotions vary with increased activity,

we plot the relationship between number of posts and the average

SWB in Figure 2b. A similar trend is observed where people with

limited or many posts are more positive.

4 EGO-LEVEL ANALYSIS
To understand how ego networks are formed with respect to emo-

tions, we study undirected and directed ego networks.

Undirected Ego Networks. To study emotions in undirected ego

networks, we look at the friendships that are between negative and

positive users. In large-scale networks, assortativity is a common

pattern [21], where users of the same type connect to one another.

Due to assortativity, we expect positive users to be more connected

to positive users and negative users to be more connected to nega-

tive ones. Recent studies have shown evidence of assortativity with

respect to sentiment [3]. Hence, we expect to see edges (+,+) and

(−,−) more than expected.

Among + and − users, three types of friendships are possible:

(+,+), (+,−), and (−,−). Table 2 provides the distribution of these

types of friendships (edges) for our dataset. To understand the signif-

icance of these values, one has to compare them with the expected

values. To compute expected values, we maintain the proportions

of + and − users (Table 1) and the network structure, but shuffle

user (node) emotions randomly. After shuffling, to compute the

expected values, we count each type of edge again.
2
Clearly, when

expected values are larger than observed values, the type of friend-

ship is underrepresented and when the opposite takes place, the

2
Expected values can also be computed from Table 1.



Table 2: Friendships (Undirected Edges) Distribution

Edge Number Proportion Expected Surprise
(+,+) 70,081 30.35% 20.60% 115.92

(+,−) 110,084 47.68% 49.57% -18.20

(−,−) 50,736 21.97% 29.83% -82.56

Total 230,901 100.00% 100.00%

Table 3: Follower/Followee (Directed Edges) Distribution

Edge Number Proportion Expected Surprise
(+,+)
−−−−→ 415,310 29.10% 20.57% 251.88

(+,−)
−−−−→ 334,455 23.43% 24.78% -37.25

(−,+)
−−−−→ 345,818 24.23% 24.79% -15.59

(−,−)
−−−−→ 331,739 23.24% 29.86% -172.64

Total 1,427,322 100.00% 100.00%

friendship type is overrepresented. To understand if the difference

between expected values and those that are observed is significant,

we compute surprise (see Ref. [15] for details). A surprise value on

the order of tens is highly significant; hence, all observed values

are significant with p-values almost equal to zero.

From Table 2, we observe that though there are more negative

users than positive users in the network, friendships among pos-

itive users (+,+) are far more than those between negative users

(−,−). Moreover, while (+,+) friendships are significantly overrep-

resented, (−,+) and (−,−) are significantly underrepresented. This

indicates that with respect to emotions, only positive users demon-
strate assortativity and negative users are neither connected [as

expected] to other negative or positive users. This contradicts the

common perception that networks with respect to emotion and sen-

timent are assortative [3]. Note that friendships are mutual, where

both parties need to approve of the friendship. For instance, one

can speculate that (+,−) are far less than expected as positive users

do not approve of such friendships, whereas negative users find the

friendship of interest. However, to systematically investigate such

speculations, we can analyze directed ego networks.

Directed EgoNetworks. We extend our previous study to directed

networks where follower/followee types of edges are present. Ta-

ble 3 provides the distribution of the four types of directed edges.

The links from positive to positive users

(+,+)
−−−−→ are slightly higher

than other types. Other links are almost equally likely. After com-

paring with the expected values, we find

(+,+)
−−−−→ links to be signifi-

cantly overrepresented, and the other three links are significantly

underrepresented. The results is in accord with our observations

in undirected ego networks that only positive users demonstrate

assortativity. We also observe that

(+,−)
−−−−→ links are much more un-

derrepresented than the opposite direction

(−,+)
−−−−→, which shows

that + users are less likely to follow − users than the opposite.
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Figure 3: The Probability of a Post being Positive as a
Function of Number of Positive Posts by Friends.

Emotion Correlations to Friends. We studied emotions com-

monly shared among ties. Our static analysis did not consider emo-

tion temporality or how emotions of friends (ties in the ego network)

are correlated to those expressed by the user. Here, we bridge this

gap and study temporal dynamics of emotion in ego networks.

A user’s emotion can be correlated to the users he or she follows.

Hence, for each post of a user, we gather all posts by his or her

friends (i.e., the user’s feed) published in the week prior to the

post. The choice of one week was based on previous studies [10].

Following the tradition in diffusion of innovation studies [1, 12],

we enumerate the number of positive
3
posts in this one-week feed.

Hence, we identify the number of positive posts that the user may

have read during the week before he or she published the post.

As we know whether each post is positive or negative, we can

calculate the probability of a post being positive given the number

of positive posts published by the user’s friends one week prior to

the post getting published. Figure 3 shows that with the increase in

the number of positive posts in the feed, the probability of a post

being positive also increases. This result is in line with previous

diffusion of innovations studies that have shown that the adoption

rate of an innovation as a function of number of friends adopting

it follows an S-shaped curve [1, 12]. In fact, a logistic S-curve,
f (x) = 3.003/(5.303 + e−0.07563x ), fits the plot in Figure 3 with

R2 ≈ 0.89. While this result neither indicates causality nor proves

an emotional contagion, it demonstrates the predictive power of

friends’ emotions in predicting future user emotions. In fact, a

confounding factor (e.g., an earthquake) might impact the emotions

of friends and the user simultaneously.

5 EMOTIONAL BALANCE
Consider the following scenario: A and B are friends, and A is a

positive person and B is a negative. They have a mutual friend

C . Is C more likely to be positive or negative? And if A and B are

both positive (or both negative), what will C be? To answer these

questions, we define emotional balance. Similar to the structural

balance theory, we consider all the possible ways in which the three

users in a triangle can be signed. Unlike structural balance theory,

we assign signs to nodes with user-level emotions, but not to edges.

We analyze both undirected and directed networks and identify

more-frequent-than-expected (i.e., emotionally balanced) triads.

3
The same experiment was performed for negative posts with similar results which

we do not include for brevity.



+

+ +

TriadU1

+

+ −

TriadU2

+

− −

TriadU3

−

− −

TriadU4

Figure 4: Undirected Signed Triads (denoted asUi )

+

+ +

Triad N1

−

+ +

Triad N5

+

+ −

Triad N2

−

+ −

Triad N6

+

− +

Triad N3

−

− +

Triad N7

+

− −

Triad N4

−

− −

Triad N8

(a) Non-Rotatable (denoted as Ni )
+

+ +

Triad R1

+

+ −

Triad R2

+

− −

Triad R3

−

− −

Triad R4

(b) Rotatable (denoted as Ri )

Figure 5: Directed Signed Triads

Undirected Networks. As shown in Figure 4, four types of undi-

rected triads (up to symmetry) exist in undirected networks. We

count each triad. To assess the significance of these counts, we shuf-

fle the signs of all nodes, while maintaining the fractions of positive

and negative users, and count these triads again after shuffling. We

shuffle for 1, 000 times and get the average expected triad counts

and their standard deviations. The results are provided in Table 4.

Table 4 shows that triads U1 and U2 are significantly overrep-

resented (balanced), while U3 and U4 are significantly underrepre-

sented (unbalanced). Comparing the surprise values, we identify

that triads with two or more positive users are emotionally balanced.
This observation shows that positive users are inclined to form

groups with other positive users; however, as negative members

increase, groups are less likely to form. Interestingly, U3 is more

underrepresented thanU4. We speculate that positive users are less

willing to be part of groups formed mostly from negative users.

We can now answer the questions asked at the beginning of

this section: if A and B are both positive, or at least one of them is

positive,C is more likely to be positive; ifA and B are both negative,

C is slightly more likely to be negative.

Directed Networks. In directed networks, nodes are connected

via follower-following relationships. Different from undirected net-

works, directed networks have 12 types of triads, eight of which

are non-rotatable and the other four can be rotated (see Figures 5a

and 5b). We count the triads and compute the expected number of

triads via shuffling. The results are provided in Tables 5 and 6.

The results show that triads N1, N2, N3, N5, R1, and R2 are signif-
icantly overrepresented (balanced) and the others are significantly

underrepresented. Similar to undirected networks, triads with two

or more positive users are balanced.

Connection to Structural Balance Theory. Emotional balance

has a direct connection to structrual balance theory [5, 9]. Structural

balance theory affirms that in networks where positive/negative

edges indicate friendly/hostile relationships, there are more trian-

gles with even number of negative edges. Thus, balance theory

confirms that “a friend of a friend is a friend" or “a friend of an

enemy is an enemy." Structural balance theory discusses more fre-

quent triangles in networks with positive and negative edges and

emotional balance discusses more frequent triangles with positive

and negative nodes. To connect the two theorems, one has to iden-

tify the sign of an edge, given the sign of the nodes it connects. The

edge signs can be identified from our results provided in Table 2.

We can see that only edges between two positive nodes, i.e., (+,+),

are overrepresented. All other edges that include a negative node

(−) are underrepresented. Hence, we can consider edges between

two positive nodes as positive edges and all other edges where one

endpoint is a negative node as a negative edge. Thus,

“Connections between two positive users are positive.
Connections involving a negative user are negative."

Following this approach, we see that all triangles in Figure 4 that

are considered balanced by emotional balance, are also considered

balanced by structural balance theory. For instance, TriadU2 which

is balanced by emotional balance, is also balanced by structural

balance theory as after edge sign assignments it contains 1 positive

edge and 2 negative edges. Similarly, TriadU3 which is considered

imbalanced by emotional balance, is also imbalanced by structural

balance as after assigning edge signs it contains 3 negative edges.

6 COMMUNITY-LEVEL ANALYSIS
To investigate emotions in communities, we investigate (I) whether
community members are emotionally similar and (II) whether struc-
tural properties of communities are related to the emotions of their

members. To study the former, labeled community membership

information is required and to investigate the latter, metrics that

describe structural properties of communities are needed.

I. Are Community Members Emotionally-Similar? Here, we
investigate two questions. First, we identify whether a user’s emo-

tion is connected to the overall emotion of the communities she has

joined. Second, we determine whether this connection depends on

the size of the community. We speculate that members of smaller

communities to be more emotionally similar to each other.

We first define a community’s subjective well-being SC to be the

average subjective well-being of its members (S(u) values):

SC =
1

|C |

∑
u ∈C

S(u), (2)

where C is the community and |C | denotes its size.
For each user, we calculate the average SWB of the communi-

ties that the user has joined, after removing the user from these

communities. We consider a user to be emotionally-similar to her

communities, when the sign of this average value and that of her

SWB match. The signs match for 58% of the users, indicating that

most community members are, on average, emotionally similar.

Next, we follow a similar approach and compute the proportion

of users for which their SWB’s sign matches that of the average

SWB of all communities of size k that they have joined. Figure 6



Table 4: Distribution of Undirected Triads

TriadUi |Ui | E(|Ui |): Expected |Ui | after shuffling (std. dev.) P(Ui ) E(P(Ui )) (std. dev.) Surprise
U1: + + + 60,384 24,433.81 (2,179.87) 23.04% 9.32% (0.83%) 241.66

U2: + + − 106,245 88,329.49 (3,083.68) 40.55% 33.71% (1.18%) 74.02

U3: + − − 74,399 106,483.39 (2,120.52) 28.39% 40.63% (0.81%) -127.54

U4: − − − 21,008 42,789.31 (3,204.84) 8.02% 16.33% (1.22%) -115.12

Total 262,036

Table 5: Distribution of Rotatable Directed Triads

Triad Ri |Ri | E(|Ri |): Expected |Ri | after shuffling (std. dev.) P(Ri ) E(P(Ri )) (std. dev.) Surprise
R1: + + + 913,683 378,049.32 (15,917.34) 22.61% 9.36% (0.39%) 915.00

R2: + + − 1,595,178 1,364,136.18 (21,500.88) 39.48% 9.36% (0.53%) 243.05

R3: + − − 1,176,753 1,640,888.97 (15,863.67) 29.12% 40.61% (0.39%) -470.15

R4: − − − 355,344 657,883.50 (22,220.46) 8.79% 16.28% (0.55%) -407.65

Total 4,040,958

Table 6: Distribution of Non-Rotatable Directed Triads

Triad Ni |Ni | E(|Ni |): Expected |Ni | after shuffling (std. dev.) P(Ni ) E(P(Ni )) (std. dev.) Surprise
N1: + + + 1,316,055 552,917.31 (20,755.11) 22.24% 9.34% (0.35%) 1077.5

N2: + + − 765,223 665,765.25 (11,463) 12.93% 11.25% (0.19%) 129.3

N3: + − + 775,262 665,405.19 (8,718) 13.10% 11.24% (0.15%) 142.9

N4: + − − 571,829 801,288.96 (10,310.46) 9.66% 13.54% (0.17%) -275.6

N5: − + + 790,960 665,551.50 (11,885.61) 13.37% 11.25% (0.20%) 163.1

N6: − + − 581,457 801,385.11 (6,394.29) 9.83% 13.54% (0.11%) -264.2

N7: − − + 584,889 800,928.03 (9,984.96) 9.88% 13.53% (0.17%) -259.6

N8: − − − 532,109 964,542.66 (29,768.46) 8.99% 16.30% (0.50%) -481.3

Total 5,917,784
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Figure 6: User-Community Emotion Similarity

provides the results for different k . The figure shows that members

of smaller communities are more emotionally similar, confirming

our initial speculation.

II. Are Structural Properties ofCommunitiesRelated to their
Members’ Emotions?We observed that community members are

emotionally similar. In this section, we investigate whether com-

munities with different network structures have members with

different types of emotions. This allows us to reach insights such

as “dense subgraphs contain positive users."

To assess the structure and quality of a community, community

detection metrics are often employed. Here, we use well-known

measures such as (1) conductance, (2) internal density, (3) volume,

and (4) modularity to describe communities [16]. Conductance of a

community is the fraction of total edge volume that points outside

the community. Low conductance indicates that the community

is separated from the rest of the graph whereas high conductance

indicates that the community is well-connected to the rest of the

graph. Internal density, as the name suggests, is the edge density

of the community. Here, for consistency reasons with other mea-

sures, we use (1−density) as our measure such that tightly-knits

communities have low density values and sparse communities have

high density values. Volume is the sum of degrees (i.e., number of

friends) of members of the community. Finally, modularity quanti-

fies how different the community is from a community formed with

the same degree sequence in a random graph. A low modularity
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Figure 7: Community Measures vs. Emotion of Community Members

value indicates that a community appears to be random and a high

value indicates that a community is statistically significant.

To assess the relationship between community structure and

member emotions, for each community, we compute both its com-

munity Subjective Well-Being (Equation 2) and the values of the

aforementioned measures. Figure 7 shows the relationship between

community measures and the SWB values. From the figure, we

observe the following community-level patterns (denoted as C1-3):

C1. Members of Isolated Communities are Extremely Negative. Figures
7a and 7b show that when conductance or volume is low; that is,

when the community is isolated from the rest of the network, the

average community SWB is extremely low. When communities are

well-embedded (conductance > 0.4), members are mostly neutral.

C2. Members of Super Dense (or Super Sparse) Communities areMostly
Negative. Figure 7b shows that when the internal density of a com-

munity is close to 0 (a dense community) or 1 (a sparse community),

community members are mostly negative. We observe a similar pat-

tern in Figure 7d, where most members of communities with very

low or very high modularity values are negative. Very low modu-

larity indicates sparse communities formed in random graphs [21].

C3. Communities with Moderate Densities contain Positive Members.
Figure 7b also shows that for most communities with a moderate

density (not too sparse or dense), the community subjective well-

being is more positive.

These observations have further implications in community

detection. Community detection algorithms often tend to mini-

mize/maximize a community detection measure. The connections

between subjective well-being of a community and some of these

measures indicate that user emotions may prove useful as an alter-

native data source to detect communities. However, we have not

pursued this path further and leave it as a part of our future work.

7 NETWORK-LEVEL ANALYSIS
In Section 4, specifically in Table 2, we showed that: (1) friendships

among positive users (+,+) are significantly more frequent than

(−,+) and (−,−); (2) (−,+) and (−,−) are both significantly under-

represented; and (3) (−,+) friendships are much more frequent, and

less underrepresented, than (−,−), indicating that negative users

prefer befriending positive users rather than other negative users.

These observations indicate that there might be a connection

between user emotions and a network property known as core-
periphery [4]. Social networks often exhibit a core-periphery struc-

ture [32], where they consist of a dense cohesive core and a sparse,

loosely connected periphery. Here, we speculate that positive users

act as the core, and negative users form the periphery. However, to

systematically investigate this speculation, we need a method that

can capture the core-periphery structure of a network.

Stochastic Kronecker graphs can effectivelymodel core-periphery

structure in real-world networks [13]. Stochastic Kronecker graph

is a generative model that can capture a long list of properties of

real-world networks, including the core-periphery structure, using

Kronecker graph product. In Stochastic Kronecker graphs, given

the adjacency matrix of a graph A ∈ Rn
k×nk

, we aim to learn a

small probability matrix P ∈ Rn×n , known as the Kronecker initiator
matrix, such that the kth Kronecker power of P (i.e., P ⊗ P · · · ⊗ P︸          ︷︷          ︸

k times

)

is most likely to have generatedA, i.e., P(A|P) is maximized (for fur-

ther details refer to Ref. [13]). The KronFit algorithm can estimate

the Kronecker initiator matrix for a real-world graph using the

maximum likelihood principle [13]. Assume that KronFit is used

to fit a 2 × 2 initiator matrix I =
[ a b
c d

]
to a network that exhibits a

core-periphery structure. Then, a represents the core strength and

is large, as most edges are inside the core; by contrast, d is small, as

very few edges exist among the periphery nodes. In an undirected

friendship network, where the adjacency matrix is symmetric, the

Kronecker initiator matrix learned is also symmetric, i.e., b = c .
To model core-periphery within the emotion network, we sam-

ple many subgraphs from our undirected friendship network. In

sampled subgraphs, we vary (1) the number of nodes from 5, 000 to

50, 000 and (2) the proportion of positive nodes from 0% to 100%.

For each possible set of parameters (# nodes, positive proportion),

we generate 25 independently sampled subgraphs. For each sub-

graph, we compute the 2 × 2 Kronecker initiator matrix

[ a b
c d

]
.

We compute the average core strengths (average a value) among

the 25 subgraphs that were generated for the same set of parame-

ters. Figure 8 provides the relationship between the average core

strength and the proportion of users for graphs with various num-

bers of nodes. We observe that (1) increasing the proportions of

positive nodes while maintaining the graph size and (2) increasing

the number of nodes, both strengthen the core.

These observations link user emotions with global network struc-

ture, allowing one to offer insight into the other. For example, one

can only use network information to determine whether the major-

ity of users within a network are positive or negative. To verify this

claim, we take the elements (a,b,d) of the Kronecker initiator ma-

trix as features, and train a cross-validated linear regression model

to predict the percentage of positive users. Figure 9 shows the Root

Mean Square Error (RMSE) for various network sizes and positive
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proportions. While in smaller graphs we have higher errors, in most

cases the RMSE is reasonable and less than 0.2, indicating that if

the percentage of positive nodes is α , our estimate is often within

α ± 0.2. We also used our regression framework for classification

purposes. Given a network, we attempted to predict whether the

majority of users in the network are positive or negative (binary

classification). We considered networks in which the majority of

users (≥ 70%) were either positive or negative. For each network,

we predicted the proportion of positive or negative users using the

aforementioned linear regression model. A prediction above 0.5

was considered a majority positive; otherwise, a majority negative.

For each set of parameters (# nodes, positive proportion), we gener-

ated 10 randomly sampled networks and computed the fraction of

networks in which the predictions were correct, i.e., the accuracy.

Table 7 reports these accuracy rates. The results show that such a

simple thresholding approach, using only three features, leads to

high accuracy rates. We believe this leaves doors open for further

investigation using more sophisticated features and classifiers.

8 EMOTIONAL-TIE MODEL
Can we design a network model that explains how friendships are

formed with respect to emotions and exhibits the same identified

emotional patterns? The Emotional-Tie model is our attempt at

designing such a model.

We start by capturing the core-periphery property in the model.

One explanation on how core-periphery is formed within a network

is that in such networks the tie strength between two nodes is a
function of how close both nodes are to the core center [4]. Borgatti

Table 7: Accuracy of Predicting Majority Emotion

Actual (+)
Proportion

50K
nodes

20K
nodes

10K
nodes

5K
nodes

Majority +

1.0 100% 100% 80% 100%

0.9 100% 100% 100% 100%

0.8 100% 90% 90% 100%

0.7 100% 90% 90% 90%

Majority −

0.3 100% 100% 80% 70%

0.2 100% 90% 80% 80%

0.1 100% 100% 100% 90%

0.0 100% 100% 100% 80%

and Everett [4] propose one such tie strength function δi j = cic j ,
where δi j is the tie strength between nodes i and j, and ci and
c j are non-negative values between 0 to 1 that denote the levels

of coreness for nodes i and j, respectively. The function has high

values for pairs of nodes both high in coreness, low values for pairs

both in the periphery, and middling values if one is high in coreness

and the other is not. Inspired by their approach and based on our

findings in Section 7, we define emotional coreness for user u as

eu = (S(u) + 1)/2. Emotional coreness is a bijection that rescales

SWB of a user from [−1, 1] to [0, 1], maintains its ordering, and still

follows the same normal distribution. After this mapping, emotional

coreness of negative users lies in [0, 0.5) and that of positive users

is in (0.5, 1]. Once emotional coreness is computed, we can define

emotional tie-strength ei j between users i and j as ei j = ei · ej . The
Emotional-Tie model is simply a network model in which users

i and j become friends with probability P(i, j) equivalent to their

emotional tie-strength ei j .
The Emotional-Tie model is a variant of the recently discovered

Random Dot Product Graphs [22]. In this model, an interest vector

xi , drawn from a specific distribution, is associated with node i .
The probability of edge formation between nodes i and j is defined
as P(i, j) = f (xi · x j ), a function of the dot product of the interest

vectors. It has been proven [22], that if the distribution that xi
is drawn from is uniform and function f is the identity function,

the model exhibits properties such as power-law degree distribu-

tion, clustering, and a short diameter. In the Emotional-Tie model,

function f is the identity, the interest vectors are 1-dimensional

emotional coreness values, and the vectors are drawn according to

the normal distribution.

Following the computation of emotional tie-strengths, we simu-

late a graph using the Emotional-Tie model. Table 8 and 9 provide

the distribution of edges and triads in this simulated graph. Not

only percentages are close to those of the original graph, but also

the same patterns of significance are observed. In particular, edge

(+,+) and triadsU1 andU2 are significantly overrepresented, while

others are significantly underrepresented. However, we notice that

the simulated graph is significantly denser than the original graph.

This is a limitation of the model, as we are only considering the

emotional compatibility between all pairs of nodes and ignore other

factors such as the probability of two individuals meeting online.

Next, we will discuss some of the properties and limitations of the

Emotional-Tie model in more detail.



Table 8: FriendshipsDistribution inModel-GeneratedGraph

Edge Number Proportion Surprise
(+,+) 481,928,369 32.21% 11,105.0

(+,−) 734,445,171 49.09% -372.47

(−,−) 279,790,622 18.70% -82.56

Total 1,496,164,162 100.00%

Table 9: Triad Distribution in Model-Generated Graph

TriadUi |Ui | P(Ui ) Surprise
U1: + + + 1.22 × 10

12
30.01% 1,434,400

U2: + + − 1.81 × 10
12

44.44% 457,620

U3: + − − 0.89 × 10
12

21.94% -767,070

U4: − − − 0.15 × 10
12

3.61% -693,600

Total 4.06 × 10
12

8.1 Properties and Limitations
As shown in Sections 3 and 8, the user SWB, and in turn emotional

coreness, follow a normal distribution N(µ,σ 2), where µ is the

mean and σ 2
is the variance. In our dataset, µ is 0.5 and σ 2

is

0.019. We denote д(x |µ,σ 2) as the probability density function. Let

n denote the number of nodes in the model-generated graph.

Theorem 1. (Density) The expected number of edges in a graph
generated by the Emotional-Tie model E(|Edges|) =

(n
2

)
· µ2.

Proof. For any two nodes i and j, the edge probability P(i, j) =

E(ei · ej ) =
∬

1

0
eiejд(ei )д(ej )deidej = µ2 as ei and ej are indepen-

dent variables and

∫
1

0
xд(x)dx = µ. Hence,

E(|Edges|) =
(
n

2

)
· P(i, j) =

(
n

2

)
· µ2.

�

We have more than 1.1 × 10
5
nodes, so E(|Edges|) =

(
1.1×105

2

)
·

0.52 ≈ 1.5125 × 10
9
, which is very close to the number of edges in

the simulated graph. The theorem shows one of the limitation of

this model: graphs generated are much denser than their real-world

counterparts. To mitigate this limitation, one can add a random coin

flip to keep α percentages of edges that are to be formed (α = 0.1%

in our dataset) to achieve the same density. Our experiments show

that adding such random coin flips result in graphs that have correct

densities and exhibit the same patterns for edges and triads.

Theorem 2. (Triads) The expected number of triads in a graph
generated by the Emotional-Tie model E(|Triads|) =

(n
3

)
· (µ2 + σ 2)3.

Proof. For any three nodes i , j, k ,

P(ijk forms a triad) = E(e2i · e
2

j · e
2

k )

=

∭
1

0

e2i e
2

j e
2

kд(ei )д(ej )д(ek )deidejdek

= (µ2 + σ 2)3,

as ei , ej and ek are independent and

∫
1

0
x2д(x)dx = µ2 + σ 2

. So,

E(|Triads|) =
(
n

3

)
· P(ijk forms a triad) =

(
n

3

)
· (µ2 + σ 2)3.

�

For our dataset,

(
1.1×105

3

)
· (0.52 + 0.019)3 ≈ 4.318 × 10

12
, which

is close to the total number of triads in the simulated graph.

Theorem 3. (Clustering) Emotional-Tie model exhibits cluster-
ing, i.e., P(i, j |(i,k) ∧ (j,k)) > P(i, j).

Proof. For any three nodes i , j, k ,

P(i, j |(i,k) ∧ (j,k)) =
P(ijk forms a triad)

P((i,k) ∧ (j,k))

=

∭
1

0
e2i e

2

j e
2

kд(ei )д(ej )д(ek )deidejdek∭
1

0
eieje

2

kд(ei )д(ej )д(ek )deidejdek

=
(µ2 + σ 2)3

µ2 · (µ2 + σ 2)
= (µ +

σ 2

µ
)2 > µ2 = P(i, j).

�

Hence, in the Emotional-Tie model, two users are more likely to

be friends if they have a common friend.

9 RELATEDWORK
In addition to previous related research discussed throughout the

paper, our work has links to the following areas:

I. Opinion Mining and Sentiment Analysis. Research in senti-

ment analysis and opinion mining [18, 23] has traditionally focused

on means to classify, extract, or summarize opinions or sentiments.

Less frequently, it has focused on mining sentiment patterns. An

example includes the study by Mishne et al. [20] in which the au-

thors also use LiveJournal as their data source. The authors built

an interesting system to track the usage level of certain moods (e.g.

worried) and connect mood usage to online events. Moreover, while

network information has been used to classify sentiments [30], the

connection between sentiments and social ties is less explored.

Exceptions include studies that have utilized link information to

investigate assortativity with respect to sentiments. For instance,

Bollen et al. [3] show that online social networks may be subject to

social mechanisms that cause assortativity at the sentiment-level.

Theymeasure correlations between sentiments expressed by twitter

users and that of their friends to show sentiment assortativity. Our

work extends previous research by identifying sentiment patterns

within different levels of social networks.

II. Signed Networks. We looked at nodes in social networks that

carried emotions. Hence, our study seems to complement studies

in signed social networks where edges are signed [14]. The study

by Leskovec et al. [15] is one example. The authors study relations

between users and how their positive or negative relationships

influence the structure of online social networks. They connect their

findings to the classical theory of structural balance and discuss an

alternative theory of status.

III. Cascades and Emotional Contagion. Research in informa-

tion cascades [8, 11] has looked at how innovations, rumors, among

other entities can propagate through a social network. Hence, cas-

cade studies have looked at the interplay between an innovation

being propagated and a social network. This indirectly connect

these studies to that of ours as we are analyzing emotions and

social networks. More recently, Coviello and his colleagues [6] and



Miller et al. [19] have studied sentiment propagation in online so-

cial networks. Assessing the level of influence or propagation that

can happen with respect to emotions in online social networks is

beyond the scope of this work, but the results obtained in this paper

may help better understand emotion contagion in online social net-

works. Our result about emotion correlations to friends is aligned

with, and also a complement of, the study by Kramer et al. [10].

While they identify posts to be positive or negative by sentiment

classification, our emotion data is provided by users directly.

IV. Emotion Disclosure. Research in emotion disclosure has fo-

cused on studying the need for emotional expression on social

networks [17]. As all emotions in our datasets our disclosed, our

study complements such studies by looking at the interplay be-

tween expressed emotions and social ties.

10 CONCLUSIONS
We have identified the following emotional patterns at the user,

ego, triad, community and the whole-network level:

◃ User-Level Patterns. There are more negative users that pos-

itive ones (negativity bias) and prolonged or more intense social

media usage does not necessarily lead to sadness.

◃ Ego-Level Patterns. Assortativity is only observed with respect

to positive moods, i.e., happy users are friends with happy users,

but sad users are less often friends with other happy or sad users.

Alignedwith recent studies in product adoption and viral marketing,

an S-curve pattern is observed where a user is more likely to express

an emotion as more friends express similar emotions.

◃ Triad-Level Patterns.Most triads are formed from two or more

positive users. We denote these triads as being emotionally-balanced.
By considering connections between two positive users as positive

and connections involving a negative user as negative, all emotion-

ally balanced triads are also structurally balanced and vice versa.

◃ Community-Level Patterns. Community members have sim-

ilar emotions. This similarity is stronger in smaller communities.

A community’s structure is connected to its members’ emotions.

◃ Network-Level Patterns. Users with positive emotions form a

core; users with negative emotions form its periphery. Exploiting

only the core-periphery pattern, one can accurately predict whether

the majority of users within a network are positive or negative.

Given user emotions, the Emotional-Tie model can simulate

friendships and exhibit the aforementioned emotional patterns.

Further Directions. Findings in this study can be utilized for var-

ious applications. Examples include (1) exploiting emotion cor-

relations to detect communities, (2) using emotional balance to

recommend (or filter) friends, and (3) utilizing emotions (among

other content) to predict network structures or vice versa.

Even with a detailed dataset, formulating basic questions and ex-

periments has been challenging. We consider elaboration of further

questions on emotions a future direction. In particular, emotion dy-

namics was less explored in this paper. Studying emotion dynamics

helps answer questions such as how quickly do users recover from

negative moods? or how do emotions evolve in communities?
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